
AD-A280 181

Scientific Research Associates, inc.

50 Nye Road, P.O. Box 1058 Glastonbury, Connecticut 06033
Tel: (203) 659-0333 Fax: (203) 633-0676

FINAL REPORT R-9231F

THE PHYSICS AND OPERATION OF

ULTRA-SUBMICRON LENGTH SEMICONDUCTOR DEVICES

SDTIC

A LECTIE ln
Submitted to ELUCT fl 19

Office of Naval Research 0 0
800 North Quincy Street

Arlington, VA 22217-5000

May 1994

Approved for Public Release;
Distribution Unlimited

DTC QUALYYIN •'T

9 4 - 1 7 5 1 4 ,v n__ _ _a__ _ _ _ _ _ _ _ _ _ _ _

!11111• h!!h 9411 i H6 li8ii1 19
94 63 8 119



THE PHYSICS AND OPERATION OF

ULTRA-SUBMICRON LENGTH SEMICONDUCTOR DEVICES

TABLE OF CONTENTS

AB STRA CT ................................................................................................... 2

I. PREFA CE .............................................................................................. 3

2. INTRODUCTION ................................................................................ 5

3. THE SINGLE PARTICLE DENSITY MATRIX .................................... 10

4. EXAMPLES OF THE EQUILIBRIUM DENSITY MATRIX ............... 13

5. EQUILIBRIUM DISTRIBUTIONS:THE QUANTUM POTENTIAL ....... 19

6. DISSIPATION AND CALCULATION OF CURRENT ........................ 25

7. SINGLE BARRIER DIODE: CONSTANT SCA'TERING RATE ..... 35

8. RESONANT TUNNEL DIODE; VARIABLE SCATTERING RATE ....... 38

9. THE QUANTUM HYDRODYNAMIC EQUATIONS ......................... 44

10. ELECTRON AND HOLE TRANSPORT ............................................ 65

11. TRANSIENTS IN QUANTUM WIRES ............................................. 83

12. RECOMMENDATIONS .................................................................... 94

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced "
Justification....

By ......
Distribution I

Availability Codes

Avail and I or
Dist Special

-II-



THE PHYSICS AND OPERATION OF

ULTRA-SUBMICRON LENGTH SEMICONDUCTOR DEVICES

ABSTRACT

This document summarizes activities under ONR Contract: N00014-86-C-0780,

under which equilibrium and nonequilibrium electron and hole transport in micron

and submicron structures were studied via a wide range of numerical procedures.

These included Monte Carlo methods, moments of the Boltzmann transport

equation, Schrodinger's equation and the quantum Liouville equation in the
coordinate representation. While all of the studies have resulted in a large

collection of publications, the basic theme of the studies was the determination of

the physics of device operation and the influence of small structure size on this

operation. The most recent activities have involved the quantum Liouville

equation with emphasis on dissipation and the calculation of current. This

document includes a description of quantum transport via the quantum Liouville

equation, as we now understand it, as well as a brief summary of the previous

activities involving larger submicron devices. While the principle goal of this study

was elucidating the physics and operation of nanoscale devices, a continuing

requirement was that all algorithms be menu driven and accessible to device

scientists and engineers. The quantum transport algorithm is accessible on UNIX

workstations and in a PC Windows format.
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THE PHYSICS AND OPERATION OF

ULTRA-SUBMICRON LENGTH SEMICONDUCTOR DEVICES

I. PREFACE

From it's inception the study discussed below, performed under ONR

Contract N00014-86-C-0780 has concerned itself with equilibrium and
nonequilibrium electron and hole transport in micron and submicron structures.
All relevant equations and procedures were invoked and included Monte Carlo
methods, moments of the Boltzmann transport equation, Schrodinger's equation

and the quantum Liouville equation in the coordinate representation.

The more classical problems emphasized hot carrier phenomena and

transients, while the quantum transport was concerned with specific quantum

phenomena and the best means of studying it. Quantum transport has occupied

most of our activities in the past few years, and the major success in the program

was the recent ability to compute current self-consistently within the framework of

a dissipation model. Two examples serve to illustrate. This model when coupled

to earlier models now permits us to deal with transients in a sensible manner in that

the relaxation to an intermediate state is better defined.

The approach we have taken is different from those of others because our

goals were very general and included the requirement that any and all algorithms
include tools that device scientists and engineers could utilize as part of routine

device design tasks. In other words one goal was to include algorithms that would

be as accessible as the standard drift and diffusion equations.

The quantum transport equation we deal with is the quantum Liouville

equation in the coordinate representation. Recall that Schrodinger's equation is a

coordinate representation description. In dealing with the quantum Liouville
equation in the coordinate representation we broke new ground, particularly with

respect to devices. For example boundary conditions that workers typically

employ in solving the drift and diffusion equations were discarded. In it's place it
was necessary to incorporate quasi-Fermi level conditions at the boundaries to

assure flat band contact conditions. The issues of Fermi statistics was not treated
within the framework of the differential equations, which would formally require

the introduction of the Dirac Hamiltonian into the quantum Liouville equation.
Instead statistics were accounted for through boundary conditions.
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The calculation of current was introduced self-consistently and coupled to

the quasi-Fermi levels. The quantum Liouville equations were also used as a basis

for justifying earlier and more recent work on the quantum potential.

This document summarizes these studies.
Many papers were either published or submitted for publication during this

study and one huge review article was initiated. A copy of each of these is

included with this report.
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2. INTRODUCTION

Since the pioneeing work of Tsu and Esaki', the experimental studies of

Soller et al. on double-barrier resonant tunneling devices, and the superlattice

detector work of Levine et al.3 , there has been growing interest in barrier/well

devices and in the findamental underpinnings of quantum device operation.

Further, following the work Datta et al.4 , there has also been rising interest in the

basic physics accompanying the Aharonov-Bohm' effect in heterostructures.

Indeed, major advances in material technology has enabled device scientists to

conjecture about new device structures that both test and illustrate basic

fundamental quantum physics issues of few and many particle systems. For

example the issue of nonlocality now finds its way into discussions of transport in

quantum devices. Nonlocality in classical physics is illustrated by the coulomb

interaction that decreases as the square of the distance between particles. In

quantum mechanics there are additional interactions that do not necessarily drop

off with distance and these are discussed below.

Another issue involves dissipation. Schrodinger's equation as traditionally

used is dissipationless, and if all transport in subsystems were governed by

Schrodingex's equation without interactions between the subsystems, all transport
would be ballistic. Dissipation in quantum mechanics is treated by introducing

additional systems, e.g., phonons, and allowing the additional system to cause a

transition between states of the original system.
A third issue, specific to the treatment of electronic devices, is the

reservoir. Traditionally, the examination of classical devices involves the

specification of densities on the bounding surfaces, regarded as reservoirs. Such
specification, which is assumed to remain valid under bias, often involves the

1R. Tsu and L Esaki: "Tunneling in a Finite Superlattice," AppL Phys Let%, 22, 562 (1973)
2T.Cj.G. Sollner, W.D. Goodhue, P.E Tannewald, C.D. Parker and D.D. Peckc "Resonant

Tunneling Through Quantum Wells at Frequencies up to 2.5 THz," AppL. Phys. Left, 43, 588

(193).

3B.F. Levine, K.K. ChoLi, C.G. Bethea, J. Walker and RJ. Malik: "New 10 micron Infrared

Detector Using Intemoand Absorpton in Resonant Tunneling GaAIAs Superlattices," Appi. Phys

Lemtt, 50, 1092 (987).
4S. Datta, MR. Mellcoh, S. Bandyopadhyay and M.S. iundrmJm: AppL Phy. LettL, 48, 487

(1986).

'Y. Aharanov and D. Bohm: Phys. Rev., 115, 485 (1959).
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concept of a quasi-Fermi level, in which the energy separation between the bottom

of the conduction band and the Fermi level at the boundary remains unchanged.
Presently, our ability to incorporate these quantum mechanical issues to

describe physical phenomena in ultra small devices and to propose quantum phase

based devices has been evolutionary. Through a coupling of experiment, theory

and numerical simulation we have been better able to understand how basic

quantum mechanical processes affect device physics. But the 'goodness' of a

description of quantum transport lies in the ability of the theory to explain the

detailed experimental results obtained from such complex devices as, e.g., two

terminal resonant tunneling diodes (RTD), quantum well superlattice detectors,

and the more common heterostructure FETs. However, the complexity of the

RTD and the puzzle associated with understanding its detailed operational

principles has led Ferry' to describe it as the fruit fly of quantum transport device

theory. How good is the fruit fly analog.

Traditionally, transport in RTDs and other barrier structures has been

analyzed through implementation of the formula' :

(1) J = [2e /(2wr)3 dkv(k[f,/ (E) - fFD (E + eo)]IT(E, Of

It is the approximations associated with this formulae that provide the bounds of
our understanding of transport in quantum structures. In equation (1) fpis the
equilibrium Fermi-Dirac distribution function, Y(E, )is the transmission

coefficient obtained from solutions to the time independent Schrodinger equation,
Eis the energy of the tunneling particle and 0 the applied potential. As discussed

by Kluksdahl et al.7 a major criticism of this approach is that it requires knowledge

of the distribution function at each side of the tunneling inteiface, rather that the
bulk like distribution far from the tunneling interface. Additionally the form of

equation (1) also implies: (1) the use of equilibrium distribution functions to

describe a biased state, when the biased resonant tunneling diode is in a non-

equilibrium state; (2) the neglect of scattering, although scattering would be

"D. K. Feay, Theory of Resonant Tunneling and Surface Superlatices , a chapter in Physics of

QuaIEectro DeWs F. Capass (ed) Sprer-Verab er pp77-i06 (o199)
7N.C. Kluh9dahi, A.IL Kriman and D.K. Fery: *Sef-Consistet Study of the Resomt

Tunneling Diode,- Phys. Rev., B39,7720 (1989).
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required to force a system to a state of equilibrium; and (3) the concept of a Fermi

level, which clearly implies the presence of strong carrier-carrier interactions,
particularly in the quantum well.

While the use of equation (1) has been successfil in predicting negative
conductance in RTD its inadequacies in explaining experiment have been well

documented. These include: First: the dc studies do not account for the peak-to-
valley ratio of resonant tunneling devices. Second: the dc studies do not

adequately treat dissipation. Third: the dc studies do not treat hysteresis in the

current voltage characteristics, observed experimentally. Fourth: the dc treatment

cannot predict how the devices will be used in applications. Fifth: the dc

treatment cannot treat the time dependent nature of the boundary conditions that

represent physical contacts.

The above studies suffer from lack of incorporating the feature basic to

quantum mechanical phenomena: a/l quantum mechanical devices are time

dependent. Apart from dissipation, there are always reflections off boundaries,

barriers, wells, imperfections and contacts. What is needed is a time dependent

large signal numerical studies of quantum feature size devices. This need has

been discussed by Ravaioli et al.8 and Frensley9 and more recently Ferry and

Grubin'°. This approach emphasizes the details of transient behavior, the numbers

of particles involved in device operation, the temporal duration under which the

effective mass approximation is valid, the significance of the Fermi-golden rule,

and other short time phenomena. As currently practiced, when scattering is

present, or when time dependent fields are present and treated as perturbations, it

is supposed that the perturbation does not modify the states of an unperturbed

system, rather the perturbed system instead of remaining permanently in one of the

unperturbed states is assumed to be continually changing from one to another, i.e.,

undergoing transitions from one state to another state. This approach is at the

U. Ravajoli, M.A. Osmn, W. Potz, N. Kluksdahl and D.K. Feny: "lnvestigation of Ballistic

Transport Through Resonant-Tunneling Quantum Wells Using Wiper Function Approach,"

Ph~ysca, 134B, 36 (1985).

9W. Frensley. "Boundary Conditions for Open Quantum Systems Driven Far From

Equihbrium," Reviews ofModern Physics, 62, 745 (1990).

IeD. K. Ferry and IL L. Grbin, 'Modeling of Quantum Transport in Semiconductor Devices"

Chap. In Solid State Physics (IL Ehrenreich, ed) Academic Press (1994)
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heart of those calculations employing the density matrix", those employing the

Wigner distribution ftnction' 2 , and those employing Green's function techniques' 3 .
In addition to these fundamental approaches there are also dedwztve

procedures that enjoy wide spread use, both for the intuitive nature of the

equations and because of the ease with which classical concepts emerge. These

discussions include the quantum moment equations, see e.g., lafrate et al.' 4,

Stroscio' 5 , and Grubin and Kreskovsky"6.

In the discussion that follows the density matrix and quantum moment

equations were implemented in the study of quantum feature size devices. Further

we have found insight for multiparticle transport based upon concepts obtained

through a recasting of the single particle Schrodinger equation. Adopting the

approach of Bohmr7 the single particle wave function is written in the form:

(2) V = Rexp[-]

subject to the condition dhat increasing the phase by 2z, does not change the

wave-fl chon. This wave function when inserted into Schrodinger's equation

results in two equations:

"n See, .g&, IL Ehrehreich and M. IL Cohen, Ph1, Rev., 115, 786 (1959), J. Goldstone and K.

Goitfried, II Nuovo COmento, 13, 849 (1959), and more recently, W.A. Frensley, Rev. Mod

Phys., 62, 745, (1990), which include a discussion of the density matrix in the coordinate

representation. Most recently a discussion by L. B. Krieger and G. J. laftate, Phys. Rev. B35,

9644 (1987) and G. J. lafrate and J. B. Krieger, Phy& Rev. B40, 6144 (1989) for a discussion of

the density matrix in the momentum representation.
I2 p. Wigne=, Phys Rev., 40, 749 (1932)

3 IR. Lake and S. Datta, PAyW Rev. 34, 6670 (1992)
14 GJ. Jafrate, ILL Gndiin and Dy. Feny. OUtilization of Quantum Distribution Functions for

Uitra-Submicron Device Transport, J. De Physique, 10, C7-307 (1981).

'5M. A. Stroscio: 'Moment-Equafion Rpqwesentafion of the Dissipative Quantum Liouville

Equation, Superlaic and Aicrodbwwes, 2, 83 (1986).

"6HLL. Gubin and J.P. Kredwvuky "Quantum Moment Balance Equations and Resonant

Tunneling Structures," Solid State Electronics, 32, 1071 (1989).

'7 See, e.g., C. Philippidis, D. Bohm and R.D. Kaye: 1l Nuovo Cimento, 713, 75 (1982). More

recently see D. Bohm and B. L. Hiley, The Undivided Univer, Routledge, London (1993)
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(3) CS (Vs) 2 +V+Q=O

0t 2m

and

"OR2 - V. 5'_)
(4) ot 2 R J

where:

(5)

Equations (3)-(5) indicate that the Schrodinger wave represents a particle

with a well defined position whose value is causally determined. The particle is
never separate from the quantum force, -VQ, that fundamentally affects it. The

particle has an equation of motion:

dt(6) m-= -V(V +Q)

which means that the forces acting on the particle consist of the classical force,
-VV, and the quantum force, -VQ. It is important to note that the quantum

potential is dependent on the shape of the real part of the wave function rather

than on its intensity, and does not necessarily fall off with distance. The quantum

force is dependent on the momentum of the carrier through the continuity

equation, but does not require a source term

The quantum potential is defined in terms of a single particle wavefimction.
And if S(r,t) = s(r,t)- E, where , is a constant independent of position, then

under zero current conditions, equation (3) is the real part of Schrodingers

equation whose solutions subject to a particular set of conditions leads to a set of

bound state eigenvalues. We will come back to this point over and over again, in
the discussion that follows.

While the above discussion is for single particle wave functions we are
interested in quantal and classical distribution functions, both representing an
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ensemble of particles. Our experience, has developed from approximate

representations of the Wigner distribution function"2, indicates that the

incorporation of the quantum potential for an ensemble of particles, where the

amplitude R is replaced by the square root of the self-consistent density, p(x), is a

significant aid in interpreting much of the salient features of quantum tranport

in devices. The use of the quantum potential provides an alternative explanation

for the peaking of the charge density at positions away from the interface of wide

and narrowband gap structures; for real space transfer, for the potential

distribution associated with a Schottky barrier, for density variations associated

with variations in effective mass, and a host of additional features. To get to these

points we must get through some mathematics, part of which is exact, and part

approximate. We begin with the development of the single particle density matrix.

3. THE SINGLE PARTICLE DENSITY MATRIX

While the density matrix approach discussed below and the Wigner

approach are mathematically equivalent, we have made the choice of the density

matrix because the equation of motion readily submits to algorithms developed by

the authors; the use of which are extremely short computational times for steady

state solutions. These algorithms are discussed below. There are limitations to

our treatment. The most important is that the equation of motion discussed below

does not include anti-symmetric components and the density matrix has not been

subject to anti-symmetrization". We note that the application of the Wigner

formulation to devices suffers from the same limitation. In some of the studies

below, the inclusion of Fermi statistics is through the boundary conditions, as in

the Wigner studies.

The structures that we discuss fall under the category of open structures*,

which can exchange particles with its surrounding, and which mathematically

expresses this interaction in terms of boundary conditions. The phenomena we are

interested in will be with systems that are far from equilibrium.

"A brief discussion of anti-symmetrization is included in the monograph: "Foundations of

Electrodynamics," S.R. De Groot and L.G. Suttorp, North-Holland Publishing Company,

Amsterdam (1972). See also O'Connell (get reference).
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The density matrix is obtained from the density operatorp.,Q), which

following Dirac notation" is:

(7) pp (t) = FXi(t) > P(i) < i(t

where 1i(t)> represents an eigenstate 3 . The time evolution of the density

operator is obtained from the time evolution operator2' U(t,t) which has the

propertyb(t, tj)i(tj) >=Ji(t)>. The time evolution operator is unitary and the

dependence of the density operator on previous times is given by:.

(8) pP(t) = Ut, to)pp t)Q,1 to)t

where the symbol 't' represents the adjoint. The time dependence of the density

operator is governed by the time dependence of the time evolution operator, which
isa:

(9) ih dU(tt, ) = H(t)U(t, to)
dt

Assuming that the Hamiltonian H(t) is Hermetian, the time dependence of the

density operator is:

'9 P. A. ML Dira The Principles of Quantum Mechanics, Oxford University Press, London
(1958). Particular attention should be paid to Section 33, where we note that if P(i) is the

probability of the system being in the ith state, it can never be negative If p' is an eigenvalue of
Po, and p' > is an eigenket belonging to this eigenvalue, then p.,IPi >=pdiP>. As

discussed in section 33, p1 cannot be negative.

2 Note, later we will be expessing our results in the coordinate representation. As discussed by

P. X. Holland, The Quantum Theory ofMotlon, Cambridge University Press, Cambridge (1993),

page 104, a mixed oate may be decomposed in an infinite number of ways, and so we cannot

uniquely deduce from it the set of eigenstates in the ensemble and their respective weights. The

same will apply to the Wiper distribution function, which is obtained from it through a

ransfonnation, and has the same contenL

21 Rerence 1191, section 27.

"2See, e.g., A. Messiah Quantum Mechanics, Volume II, John Wiley & Sons, NY, (1961),

particularly Chapter XVII.



(10) A~pQ =[H(1),p.(I)]

The density matrix in the coordinate representation is given by:

0<11PIX-,> h 2 / 2 - 1-V(x')} Xlp(t)lX'>

+ih{ 0<xIX >
01 t J-Owt

Notice that we are ignoring any spatial variation in the effective mass, although we

will deal with this later23. The last term on the right hand side of equation (11) is a

generic representation of scattering, which we treat below in a semiclassical

manner. All of the quantum features associated with the devices below will arise

from the streaming terms.
The density matrix is Hermetian, and p(x,x')-<xIp.,Ix'>=p(x,x).

Additional quantities relevant for transport include the current density matrix:

(12) j(xx')=-(V -,V.)p(X.")
2mi~

and the energy density matrix:

(13) E(xx')=--(V -V)2 p(X,')

The diagonal components of each represent the observables.

Equation (11) when coupled to Poisson's equation:

(14) V.(sV)V=-e 2 (p(x)-po(X))

2'A key study is refedad here G. T. Einevoli and L J. Sham, Boundary conditions for

envelope finctions at Interfaces between dissimilar materials, Phys. Rev. B49,10533 (1994).

12



and equations describing scattering are the relevant equations for device

transport. Note while the above equations are for electrons, we will also discuss

hole transport; the relevant modifications to the equation will be indicated.

The Liouville equation in the coordinate representation is a function of six

variables plus time. The six variables represent a coordinate phase space whose

relation to the standard phase space involving position and momenta may be

assessed through application of the Weyl transformation24 , which has been

modified to include spin

To date the description of transport in devices via the density matrix has

been confined to cases where the particles are free in two directions, which for

specificity we take as the Y and Yz directions. Further in the discussion below we

will deal with diagonal components along the free directions, and treat the density
matrix p(x,x',y = y: z = - p(xx').

To determine the form of the density matrix, we can picture a situation in

the absence of dissipation in which boundary conditions permit the separation of

equation in two Schrodinger type equations, with a solution that is the product of

two wave functions. More generally we seek solutions of the type:

(16) p(x,x',t)= yf 'POx ,t)P(x,t)

for which equation (15) is a special case. We now consider several examples.

4. EXAMPLES OF THE EQUILIBRIUM DENSITY MATRIX

For a Fermi-Dirac distribution function:

(17) fw(k,z) = 1(17)~~ +..) lexp[(E -_E,) /k, T]

and for parabolic bands the density matrix is:

24 IL WeyL Z Physik, ", 1 (1927).
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(18) p(x~x'), = r(-- 2c[(x-A ,)d••in[ (x-x')/[, ]

Here, Lim..p(x,x )=N.FI,,2 (u.). FV(pj.)=[r(3/2)]-'or +u du
.lexp[p-U71

(E-Ec)/kT, pu = (Ep -Ec)/kDT, Nc = 7(3/2)/(22 3) is the density

of states and A2 =-h2 1(2mksT) is the square of de thermal deBroglie

wavelength.

There are two limiting cases that submit to analytical expression. In the

high temperature limit, where Boltzmann statistics apply (the Boltzmann
distribution arises when u, < -4)

(19) p(x,x)= N exp[/ - (x-x')2 /4ý2]

This distribution is Gaussian. For a material such as gallium arsenide, the thermal

deBroglie wavelength at room temperature is 4.7nm and N, = 4.4x1023 /m3 . For

a nominal density of 102 3/m3 , pu, = -1.48. In the low temperature limit, e.g.,

T=OK ":

(20) ~ [k, j ] j,[k,(x- x')]
(20) p )-2 k,(x-x')

where j, (z) is a spherical Bessel function, E. = h2k2 / 2m, and k1 = [3x2N]'. In

the limit as z => 0, j, (z) :: z / 3. One of the earliest applications involving equation

(20) was in a discussion by Bardeen 2 where it was demonstrated that the electron

density profile a distance Yz from an infinite barrier was:

2 See also equation A 5.1.7 in N.H March, Solids: Defectie and Perfec* appearing in The

Single-Particle Dendty in Physics and Ckmsb, N. H. March and B. M. Deb, editori,

Academic Press, London (1987)

2 J. Bardeen, Phys. Rev. 49,653 (1936)
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(21) p(z) = N 2 k,z
0 otherwise

Figure I displays the density matrix corresponding to equation (20) for a density of
102 3 /m3 .

Real Part of te Density Matrix, T=O. K

2-

-11

1200
150

150 100 55

Fig=r 1. Density matrix for free particles weighted by a Fermi distribution for

GaAs at T=OK. The density is I 9lO/m3.

The oscillation in the density matrix along the direction (correlation

direction) normal to the diagonal is determined by the argument of the spherical

Bessel function. The periodicity depends on density as expressed by the Fermi

wave number, and suggests the possibility of a wavenumber dependent resonance.

The oscillation disappears at room temperature where the distribution approached

as Gaussian as described by equation (19). The progressive decrease in the

numbers of oscillations as the temperature increases is displayed in figure 2, which

displays a cut of the density matrix in a plane normal to the diagonal of the density

matrix The effects of Fermi statistics are also more pronounced as the density is

increased (e.g., k, is increased) azJ we expect this to manifest itself in the

oscillatory character of the density matrix.

15



Density Matrix Along Cross Diagonal

16

1&0

a00- T0OK 7

0 SO 10 11O30

The density matrix o(x,x') shown in figure 1 is plotted for a range of
values of x and x, (0 < x<200nm, 0 < e< 20(bm). The density 'observable'

,o(x) a p(x,x) is the value of the density matrix along the diagonal and is plotted

along the physical coordinate x. Pictorially, the density is a projection of the

diagonal component of the density matrix onto the x-axis. The density matrix
along the cross diagonal is defined as p•,(x) a p(L - x,x), where L is the length

of the structure; it is shown as a projection onto the x-axis.

The above discussion provides an indication of what the density matrix

coordinate represetation profiles corresponding to standard classical equiiboritnn
distribution functions look like. It is expected on physical grounds that a classicl

problem studied with the classical distribution funiction in momnatum space would

yield the same physical results as that obtained with coordinate iersenatI

density matrix. For example, classically, with the Boltzmann distribution, the
probability distribution is proportional to exp-V(x)/Ik#T. Thus, when a potential

energy change equal to k,, TW~nO (0.059521 ev at room temperature) is

considered, classical theory teaches that the density will be reduced by an order of

magnitude. Solving the equation of motion of the density matrix for this case

16



provides the same result. If we go to the other extreme at T-0K, and recognize

that the Fermi energy relative to the bottom of the conduction band, E,- Ec,

corresponding to a density of 10l/m3 is 54.4 mev, while that corresponding to a

density of I0 2/m 3 is 11.7 mev, then introducing a barrier of 42.7 mev will reduce

the density by an order of magnitude. This is shown in figure 3.

Fermi Slaistics. Density and Potenial Energy

0.04
25-

j o.oa

0.01

22-
S0.00

21
0 50 100 150 200

IxbUMM (Nn)

Figure 3. For GaAs at T=O, Fermi istic&s, with a step change in potential

energy from 0.0 ev to 0.042 7 ev (dotted line), the non-self consistent spatial

variation in density (solid line).

Apart from the asymptotic (classical) values of density far from the

interface we point to the local oscillation in density on either side of the interface,

and make note of the position of the peak and minimum values of density. Classical

studies indicate that the peak value of density occurs at the interface; while all

quantum mechanical studies indicate that the peak is shifted away from the

interface. In a recent density matrix study", devoted to Boltzmann statistics, it

was analytically demonstrated that the density could be represented in equilibrium

as being equal to

RH L. Gnin, T.R. Cvindan, J. P. Kedkv kandm. A. Strscio, Sol. & Elecftn, 36, 1697
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(22) p(x) = N. expfju8 - (V(x) + Q(x)I/ 3)]

In the absence of the quantum potential the density is determined solely by

the potential energy, and so the density for the potential energy distribution of

figure 3 would be equal to its left hand value right up to the potential barrier, and a

second (lower) value within the potential barrier. The finite value of the quantum

potential and its spatial variation is responsible for the minimum and maximum

values of the density occurring away from the interface. This will be discussed in

more detail below where we will also illustrate the value of the quantum potential.

The factor '3' that appears in equation (22) is discussed in detail in reference 27.

The potential variation in figure 3 is imposed and abrupt. Alternatively we

can envision a structure in which the densty changes abruptly at the same point

(100nm). Then a solution to the Liouville equation and Poisson's equation yield a

potential distribution whose values asymptotically approach those of figure 3. The

potential distribution at the interface is no longer abrupt, and the local peak seen in

figure 3 is absent. Rather, there is a more gradual decrease in density across the

interface, with values that cannot be described by the classical distribution, but

require the presence of the quantum potential. The two dimensional density matrix

for the calculations of figure 3 are shown in figure 4.

Re" Pat of the Density Matix
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The origin of the scales in figure 4 is closest to the reader where the density
matrix has its highest values. Notice the ripples in the density matrix closest to the
highest density regions. Ripples are also present at the lower density regions but
their period and magnitude are weaker. Generally the effects of Femi statistics are
more pronounced at higher densities, where from equation (20) it is seen that the
amplitude of the oscillation increases and the period decreases, with increasing

density.

5. EQUILIBRIUM DISTRIBUTIONS AND THE QUANTUM POTENTIAL

As indicated in the earlier discussion the classical distribution function

accounts incorrectly for the charge distribution in the vicinity discontinuities in

potential energy and cannot be used if the goal is a description of the operational
physics of devices; the quantum potential must be included. Additionally, we have
also used the quantum potential as an aid in interpretation. Several cases are

treated below which illustrate the significance of the quantum potential. The

situation of the resonant tunneling diode will be treated separately where the
significance of the quantum potent•iaI is most apparent.

The first case of interest is that of a single barrier of modest height, 42.7

mev. This value of barrier height is the same value as that of the step potential of
figures (3) and (4) where the asymptotic values of density differed by an order of

magnitude. For the case illustrated in figure 5, we again consider a non self-

consistent calculation, with a reference density of 10I /m3, T=0K, Fermi statistics

and a device length of 200nm. For the situation when a Wry wide 42.7 barrier,
100nm width and centrally placed, is considered it is found that the asymptotic

value of density within a central SO un region is equal to 10"Inm3, a result
expected from the earlier discussion. There was additionally the structure in

density at the potential discontimuity that was seen in figure 3.

When a narrow 10nm wide barrier is considered the results are

quantitatively different. There is a local peak away from the barrier, but the
minimum vplue of density exceeds that associated with the wider barrier. Of

interest, however, is the structure of the quantum potential, shown in figure 5.
First we note that the magnitudes of Q(x) and V(x) are approximately the same

within the barrier region. The quantum potential is negative within the barrier, a

consequence of a positive value of curvature for the density within the barrier (the
density reaches a minimum at x-IOOnm). The quantum potential is positive in the
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regions immediately upstream and downstream of the barrier, where the curvature

of the density is negative. The signs of the quantum potential are consistent with a

density that is below its classical value immediately outside the barrier, and above

its classical value within the barrier region.

Qmtum Md PoblmalEnEWg
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Figure 5 Qantum potential (solid curve) and V(x) (dotted) for a single bamer

lOnw wide.

The next case of interest, which again offers the quantum potential as a
vehicle for interpretation is the familiar self-consistent charge distribution
associated with a wide bandgap/narrow bandgap structure. Figures 6 through 8

illustrates results using the density matrix for a room temperature self-consistent

calculation. Here the device length is 200nm where for O<x<lOOnm, ND'.10P/m3,
for l00nm<x<200nm, Nb-1020/m 3 . A barrier of 300 mev is imposed. While the

non self-consistent calculations of figure 3 show a reduction in charge density
within and near the edge of the barrier, there is nothing in figure 3 resembling the

extent of the charge reduction seen in figure 6. The contributions to this change

are several-fold. First the barrier of figure 6 is an order of magnitude higher than

that of figure 3. Second, the applied potential energy difference across the
structure is chosen to yieldflat band conditions, and thus equal to the height of the

barrier plus the built-in potential. Thir74 the self-consistent potential displays

structure. What is the origin of this structure?
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mei heterostructure diode at T=3001( with Fenni statistics and flat band
conditions

In all of the calculations with a heterostructure barrier, once we pass the

peak density, there is a progressive decrease in density until a minimum value of
density is reached within the interior of the heerobarrier. The simple explanation

based upon the quantum potential indicates, from equation (6) that the net force,

under zero current conditions is zero. But the quantum mechancal self-force,

generated by variations in the single parftcle density (from the quantum potential

as seen in figure 7) is always nonzero. Here as we move into the wide band gap
region where the density is decreasing and approaching a minimum value, the

curvature of the density is positive, resulting in a negative value for the quantum
potential. Since there is a minimum value of the density within the wide band gap

region, there is structure to the quantum potential leading to a spatially dependent

driving force. This force must be balanced by variations in the self consistent

potential as seen in figure 7. The self-consistent potential which is driven by

Poisson's equation is now subject to the additional constraint imposed by the

quantum potential The details are not governed by equation (6), rather they are

governed by the Liouville equation; but the qualitative features are represented by

equation (6). When examining the classical situation we note that the potential

energy, is also constrained by a dhffsivw contrbuton. Diffusive contributions are
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also present when quantum transport is considered. The quantum potential

contribution is an additional contribution that is not dependent upon the presence

of diffusion.

Pofntd Energy and Qunum Potmntd

0.15

0.10

0.05

9 40.00

-410

f..at.band. conditionsi

........ umu Pob tM~ k - 4).1

I I I -0.20

0 50 100 1;0 2W0

Fig re 7. Se#f-cwnsi nt calculaton of the qum fmn potential and potenia
energyfor a 300 mey heteroo~e d&ode at T=300K, with Fermi MOW=sic and

flat band con.ons

There are several interesting additional points concerning the structure of

the charge distribution associated with the calculations of figures (6) and (7). A

good approximation to the curvature of the potential energy within the wide band

gap region and near the interface, is to assume that the region is free of mobile

carriers, WherebiV2 V(X) = (e2 /s-)p0 (x). As a consequence, the- higher the

heterobarrier, the. larger the width of the depletion zone on the wide band gap side

of the structure. Under flat band conditions where the net charge distribution is

zero there is a corresponding increase in charge on the narrow band gap side, and

this accumulated charge will increase with increasing barrier height. Thus unlike

the non-self consistent calculation of figure (3) there is significant charge

accumulation on the narrow band side of the structure. The quantum potential

which is negative on the wide band gap side and therefore yields a larger than
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classical result for the particle density, also has the effect of yielding a lower than

classical result for the density just outside of the barrier. The small region of

negative quantum potential to the left of the barrier is a consequence of the
quantum potential defined in terms of the square root in density. An expansion of

the quantum potential leads to contributions from the square of the first derivative
of density as well as the second derivative.

What is the situation with multiple barrier structures; the simplest being

the double barrier resonant tWmeling structure. The characteristic feature of the

multiple barrier structures is the existence of quasi-bound states within between the
barriers. The density between the barriers depends upon the barrier height, barrier

configuration, doping, etc. As discussed earlier 2 , the value of the quantum

potential within the quantum well of a double barrier structure is approximately

equal to the energy of the lowest quasi bound state, relative to the bottom of the

conduction band. We note that in terms of the definition of the quantum potential,

under steady state, zero current conditions, it is direct to show from Schrodinger's
equation that Q(x) +V(x) = E, where E is the energy of the quasi-bound state (see

also reference 20). We illustrate the quantum potential for a 200nm structure

double barrier structure. There are two barriers 5nm wide, each 300 mev high,

separated by 5 nm, placed in the center of the structure. The background doping is
10U/m? and uniform, except in the interior 40nm region where it is reduced to

102/nm3 . Figures 8 and 9 show, respectively the density and donor distribution, the

quantum potential and the self consistent potential energy.

With respect to figures 8 and 9, we note that carriers in excess of

4x102/m 3 reside within the quantum well. The quantum potential is negative

within the barriers of the structure corresponding to the curvature of the density,

and is positive within the quantum well. But the remarkable feature is that the
quantum potential is approximately constant within the quantum well. We have

found that for the 300mev barrier, the quantum potential within.the well is

approximately 84mev (for a 200mev barrier the quantum potential within the well
is approximately 70mev). A key feature in utilizing the density matrix in the

coordinate representation. is that the quantum potential behaves like a quasi-bound

state.

It L. Gnrbin, J. P. Kreskovsky, T. R. Govindan and D. IK Ferry, Semi. Sd Technolog. (1994)
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Figure 8. Self-consistent T=300K calculation with Fenni statistics showing the

density and donor disDnibution for a symmetric double brrier structure.
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Further evidence for use of the quantum potential within the well as a

measure of the energy of the quasi-bound state was provided by supplemental with

calculations in which the double barrier structure was placed within a 40nm wide

quantum well. 'I he depth of the quantum well was varied. As the depth increased

the quantum potential between the barriers remained independent of position, but

increased slightly in value. The situation when the quantum well was 150mev

deep, resulted in a value of the quantum potential between the barriers that

increased to 94mev. The detailed results are different than that of figures 8 and 9

in that the density between the barriers has increased29.

6. DISSIPATION AND CALCULATION OF CURRENT

The calculations of the density and potential profiles for the barrier

structures in both non self consistent and self consistent studies indicate that for

distances sufficiently far from the interface the results are the same as that

expected using the dissipationless Boltzmann (or Vaslov) equation. When current

flows, classical device transport studies usually proceed via the drift and diffusion

or hydrodynamic equatkins, or through solutions to the Boltzmann transport

equation and Monte Carlo procedures. Here, for cases where the ends of the

device are heavily doped N+ regions, boundary conditions on the numerical

procedures are invoked to assure that the numbers of particles leaving and entering

the structure are the same. An alternative approach that should yield the same

results with respect to charge and potential energy distributions at the boundaries,

is to implement procedures recognizing that dissipation at the beginning and ends

of the structure may be represented by carriers that thermalize to a local

equilibrium. The issue then is how is to deal with this situation. To date, very

approximate methods have been introduced, and a rational for this approach is

discussed below, but it is emphasized that some procedure for dissipion must be

invoked if transport in devices is to be discussed sensibly.

One of the most succinct way to express the problem of dissipation follows

that of Caldeira and Leggett3. We consider a system A (the device) interacting

"•This increase in density has at least two origins: (i) the increased density on either side of the

barriers, and (ii) the lowering of the quasi-bound state relative to the Fermi energy of the entering

carrers
30A. 0. Caldeira and A. J. Leggett, Physicm. 121A, 587 (1983).
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with a second system B (the reservoir) described by the Hamiltonian
HT = HD,, +HR,,, + H 1,,,. incorporating the reservoir and the Hamiltonian

describing the interaction between the two systems. The breakup between the
device and reservoir is problem dependent. If upper case letters denote the
coordinates of the reservoir and lower case letters the coordinates of the system of

interest (e.g., the electron system) then the quantity interest is the density matrix
< xRIe'-ffh/p.,(0)e-IIjIx'R'>. This quantity describes the behavior of the entire

system. We do not need detailed information about the reservoir, rather we need

to determine its influence on, in our case, the electron system, which implies:

p(x,z',t) = dRdR= < xRe-*p ,(O)e-u"fuA Ix' R'>.

One method that has been invoked to deal with dissipation and boundaries

and current flow in devices, has been guided by perturbation theory on the density
matrix 3. First the equation of motion of the density matrix has been rewritten to

include a scattering contribution, as shown by equation (11). Below we

concentrate on the modificaiions of the Liouvilie equation through the
incorporation of scattering and deal only with the Liouville equivaent of ckmical

scattering.

In the Boltzmann picture, ignoring Fermi statistics, the scattering rate is:

(21) [Of~4.L k.i (32)f dk'f{f,(k, x)W(x, k', k) - f.(k',x)W(x, k, k')}

where the subscript 'w' denotes a Wigner function and W(x,k,k') represents the

standard transition probability per unit time. Utilizing the Weyl transformation:

(22) p(r+s,r-s)= 82 dkf,(k,r)expi2sk

with the following change in coordinates: x+x'=2r, x-x'=2s, the scattering

rate of density matrix (after manipulation of the variables of integration) is given

by:

3'K L. Grubin, T. P, Govindan and M. A. Stroscio, Semi. Sci. Tecdmolog. (1994).
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C Op(r +u,r-s]

(23) 1 j"

- 8i ]f dkdk'{ff(k, r~expi2s, k]W(r, k',k)Rl -expi2s.(k'- k)}

The structure of the scattering term within the framework of classical

Boltzmann scattering expressed within the coordinate representation is obtained

from equation (23). For example the second exponential term in equation (23) can

be expressed as an infinite series, in which case the scattering term is expressed as

an infinite series in powers of s. The lead term is given by:

op(r+sr-s)]

(24) 1
(2s) [[ _]2 fdkf.(k, r)expi2s" k]f dk'(k'- k)W(r, k', k)]

Standard classical theor9T2 teaches that:

(25) 2)fdk'(k'-k)W(r,k',k) w- kJ2(r,IkI)

where r(r, Ikj) represents a scattering rate. Thus:

(26) [.9P(r T r- =f-i2s .[ 2 3f dk f(k,r~expi2s.k]kJ7(r, kI]

which, using the inverse of the Weyl transformation:

(27) 2fL(k,r)=2'fds p(r+s,r-s)exp-i2s.k

can be rearranged as

32D. K. Fery, Semiconductors, Macmilan Publishing Company, NY, (1991).
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(28) 3'P~ Lsr )

() i2s fA s p(r + s',r - s') [exp i2(s- s')- k]kIr(rIkI)]

A significant simplification arises when the crystal momentum in equation (28) is

replaced by a divergence of the correlation vector:

[ ,p(r+sr-s)]

(p +[sir -s')[expi2(s - s`). ki]r(r.[k)]

For the case when the scattering rate is independent of momentum, the dissipation

term reduces to:

(30) [O9p(r+s~r-s)] a-r's-.Vp(r+sr-s)

and the Liouville equation in the coordinate representation is modified to read:

ihCO(X~X',I) =
Ot

(31) r-2)

(31)2 [Sx~22m D{ -2 ?xx'It) + (V(x)-V(x'))p(x,x',t)

-•Ar(x- •').(vz -v.)p(X,,')
2

The additional contribution due to dissipation was discussed in reference

[27] and in a study by Dekkei? 3 . Density matrix algorithms incorporating the

dissipation contributions of equation (31) have been implemented with some

results reported32 . But because of numerical difficulties at higher bias levels

modifications to the scattering were introduced whose consequences go beyond

33I Dftker, Phyz Rev. A16, 2126 (1977)
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the approximations associated with the expansion of equation (24). It is

worthwhile dwelling on these modifications.

In modifing the scattering term in equation (31) it was first recognized

that the dissipation term could be reexpressed in terms of a velocity density matrix:

(32) j(i,i') = ( V,) - Ve)p(X,x')

The diagonal elements of equation (32) yield the velocity flux density. In terms of

j(x~x') equation (30) becomes:

' &(X~X!,t)_

(33) t,2 (2 0( 2)•m •'~' ° Oz° zx.t)+(V(,)-V(l'))P(XX''t)+MI'(x-x')'j(x'x')

The scattering term in the above equation was then written in the form of a

scattering potential. The procedures for this were as follow. Firs, the term

j(x,x') was rewritten as j(x,x') v(x,x')p(x,V), where v(x) a v(xx) represents

the expectation value of the velocity. Secong j(x,i') was approximated as

j(xi')wv(x)p(x,x'). Higher order terms are at least second order in (x-x'), and

retaining them would be inconsistent with the approximation leading to equation

(24). Thira4 quasi-Fermi levels were introduced through the definition:

(34) E,(x)-Ep(x')=-r.dx".v(x")mr(x"),

For small values of x-x' about x, equation (34) is approximately represented by:

E,(x)-EE,(')=-(x-x').v(x)mF(x). Under this approximation equation (33)

becomes:

Ot

(35)h
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Thus we have taken the differential equation (31) whose right hand side is complex

and replaced it by one whose right hand side is real, when the density matrix is

real. Side by side calculations at low values of bias yield identical results.

While the above discussion leading to equation (35) appears to be model
dependent, the results implied by this equation have greater generality than the

means used to arrive at it.

The implementation of equation (35) permits us to calculate current in a

direct manner. How is this done? In all of the calculations with current the

assumption is that the carriers at the upstream boundary are in local equilibrium

and that the distributions are either a displaced Maxwellian or a displaced Fermi-

Dirac distribution. As discussed in reference [27] this implies that at the upstream
boundary, the zero current quantum distribution function p(x,ie) is replaced by

p(xx')exp[iMv(boundry).(x- V)/A]. Since current is inroduced as a

boundary condition to the problem asfonmulated by equation (35) a prescription

is necessayforfinding its value. An ausliamy condition was constructed

To compute a value of current for use in the Liouvifle equation, a criteria

was introduced through moments of equation (35)P. Under time independent

conditions, the momentum balance equation yields the condition:

(36) 2V 3E+[V1V]p(x)-[V1E,]p(x)=O

where E is the kinetic energy and is given 'by the equation (13). Under the

assumptions of current continuity, i.e., p(x)v(x) is independent of distance

(satisfied for the Liouville equation), and the condition that the energy of the

entering and exiting carriers are equal, equation (34) becomes:

(37) E,.(x) - E, (x') = -jj dx"mr(x") /p(je"),

where we have restricted the considerations to one space dimension. Phe current
is chosen so that E, (L) - EF (0), is equal to the change in applied energy across

the structure.

3'Thes moment equations are discussed in referen (27) and are incorporated into a later

section.
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We now illustrate some of the above considerations. The simplest type of
calculation to deal with is that of a free particle. For this case and with current
introduced as a boundary condition the density matrix is complex. The real part is

symmetric and the imagmary pan (from which current is obtained) is Lsmmetnc
about the diagonal. The calculation displayed in figure (10) shows the real part

and figure (11) the imaginary part for a 200nm with a doping of 1023/m 3" subject to

a bias of 10mev. For this calculation and parameters appropriate to GaAs, a

scattering rate of iO1sec, yields a mobility of 0.258mW/v-sec. The mean carrier

velocity for this calculation is approximately 1.3x0 4nm/sec.

Real Part of Ot. Density Matrix

0 .200

4 IIDDt
1,r• 50

)' (nm)

Figure 10. Real part of the density maix for a free particle subject to a constant

force.

Increasing the applied bias results in an increase in the carrier velocity and

an increase in the kinetic energy of the carriers. This increase affects the curvature

of the density matrix in the correlation direction and is displayed in figure 12.
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uagitnary Part of the Demt Matrix

flgtm I maglay part of the density matrix cmmoinpo ng to figure 10.
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Figure 12. Density ma*ix versus correlatn distance when current is flowing.

Dashed line is for a bias of 10 mev and a mean velocity of 1.3xIEM misec; solid

line is for a bias 200 mev and a mean velocity of 2.6x1O' m/ucc.
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AN iconductor devices sustain energy dependent scattering implying

that the scattering rate within one region of the structure will be diffrent than at a

difflrat region of the structure. To understand how this is implemented in the

density matrix algorithm several illustrative examples of nonuniform scattering

were performed. These examples deal with the generation of nonuniform fields

from variation in the mobility (vis scattering). We will treat an element with

material parameters nominally the same as those associated with figures 10-12.

However, here we vary the scattering rate within the central 5nm of the structure.

On the basis of the definition of the quasi-Fermi energy, a decrease in the

scattering time, which results in a decrease in mobility, will yield a sharp drop in

the quasi-Fermi level. The density cannot change as rapidly, but is constrained by

the Debye length and so results in a more gradual change in the self consistent

potential energy. The quasi Fermi energy and potential energy as well as the

density are displayed in figure 13 for a bias of 10 mev, where the scattering time

within the central 5nm was 10i"sec, while that at the boundaries are respectively

10' 2sec. There are several points to emphasize. For the calculation of figure 13

the quasi-Fermi energy varies in an approximately linear manner in three separate

regions. In particular within the exterior cladding regions the quasi-Fermi level is

equal to the potential energy distribution where it assures the presence of local

charge neutrality. The departure of the potential energy from the quasi-Fermi

energy for this calculation is in large part a consequence of Debye length

considerations. The quasi-Fermi energy which is an integral expression follows the

same slope, to the interior region, where the precipitous change in value is

consequence of the reduction in the scattering time.

Figure 14 displays the scattering rate used in the calculations and the self-

consistent density distribution. Of extreme significance here is the formation of a

local dipole layer within the interior of the structure.
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7. SINGLE BARRIER DIODE: CONSTANT SCATTERING RATE

The quasi-Fermi scattering model has been applied to a variety of

structures including single and multiple barrier diodes as well as electron-hole

transport. We illustrate single barrier calculations in figures 15 through 18 for a

structure with a constant scattering rate. Preliminary results for this type of

structure were presented earlier". The calculations are for a 200nm structure

containing a single 300 mev high, 20nm wide barrier embedded within a 30nm N-

region, surrounded by uniformly doped 10e/m3 material. The scattering time x is

constant and equal to 10"1 sec. The calculations are self-consistent and assume

Fernmi-Dirac boundary conditions. The first three figures, 15 through 17 show

potential energy, density, and quasi-Fermi energy distributions, respectively, for

different bias levels.

From figure 15 as the collector boundary is made more negative with

respect to the emitter, a local 'notch' potential well forms on the emitter side of the

barrier. The potential energy decreases linearly across the barrier, signifying

negligible charge within the barrier, followed by a broad region where the potential

energy decreases to its value at the collector boundary.

The charge distribution, figure 16, displays a buildup of charge on the

emitter side of the barrier, and a compensatory region of charge depletion on the

collector side of the barrier. At a bias of 400 mev significant charge accumulation

has formed on the emitter side of the barrier, followed by a broad region of charge

depletion on the collector side. Note that as the bias increases there is a

progressive increase in charge within the interior of the barrier. Both results are

consistent with the low temperature experimental findings of Eaves et ae3'.

Figure 17 displays the quasi-Fermi energy (relative to the equilibrium Fermi

energy). Becwse of the low values of current E., is approximately zero from the

emitter to within the first half of the barrier37 and then drops. to a value

approximately equal to the bias through the remaining part of the structure.

35 D. K. Feny and K L Grubin, Proceedings of the International Wor*shop on Computational

Eecronics, Univ. of Leeds 247, (993)
3 IL Eavs F. W. Sheard, and G. A. Toombs, Physics of Quantum Elecron Devices (e& F.

Capso), 107 (1990) Spinger -Verag, Brlin.
" In the emitter region the vauiation in E. matches that of V(x), and insures that p x is

comstant in the vicinity of the emitter bounday.
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Figure 15. Self consistent room temperature potential energy calculations

asatuing Fermi-Dirac boundary conditions for a single barrier structure wider

vaying bias conditions.

I versus V for the 20nm barrier is shown in figure 18. Note that for a broad

range of voltage the current depends exponentially on voltage; but there is distinct

sublinearity to the curve. In words, the sublinearity indicates that at a given value

of voltage the current is lower than expected on the basis of a pure exponential

relation. In seeking an origin of this sublinearity we note from the aocompanying

voltage distributions that not all of the voltage falls across the tunnel barrier,

indeed a substantial contribution fails across the region immediately adjacent to the

collector side of the barrier.
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Figure 17 Quasi-Fermi energv distribution for the calculations offigure 15.
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Figure 18. Current-voltage relation for the cal"uations offigures 15 trmugh 17.

8. RESONANT TUNNEL DIODE; VARIABLE SCATTERING RATE.

To illustrate the calculation for resonant tunneling structures we treat a

200nm structure, with two 5 nm - 300 mev barriers separated by a 5nm well. The

structure has a nominal doping of 1024/m 3 except for a central 50nm wide region

where the doping is reduced to 1022/m 3 . The effective mass is constant and equal

to that of GaAs (0.067m0 ); Fermi statistics are imposed; the ambient is 77K; and

current is imposed through the density matrix equivalent of a displaced distribution

at the boundaries. In these computations only one set of scattering ratos was used,

although scattering was increasd in the Wclnity of the double barrers.

The signature of the RTD is it's current-voltage relation with the region of

negative differential conductivity; for the structure considered this is displayed in

figure 19. The current is numerically negligible until a bias of approximately 50

mev, with the peak current occurring at 260 mev, followed by a sharp but modest

drop in current at 270 mev. The interpretation of these results is assisted by

figures (20) and (21) and the Bohm quantum potential. As indicated earlier, we
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have found, through an extensive number of numerical simulations, that the value

of V(x)+Q(x), between the barriers of an RTD is a measure of the position of the

quasi-bound state.

Current vs Applied Potential Energy (77K)
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Figure 19. Current versus (magnitude) voltage for the resonant tunneling

structure.

Consider figure 20 which displays the equilibrium self-consistent potential

for the RTD. Also shown is the value of the equilibrium Fermi energy

(approximately 54 mev) and the values, at five different values of applied potential

energy, of V(x)+Q(x) within the quantum well. At 100 mev the quasi-bound state

is approximately equal to the equilibrium Fermi energy and significant current

begins to flow. The current continues to increase until the bias equals 260 mev,

where there is a sudden drop in current.
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Figure 20. Equihirium potential energy and the bias dependence of V(x)+Q(x)
within the quantum welL Legend denotes collector bias.
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Figure 21. Blow up offigure 20.

To see what is happening we blow up the region on either side of the
emitter barrier, where we display values of V(x)+Q(x) before the emitter barrier
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and within the quantum well (figure 21). Within the quantum well we see the

quasi bound state decreasing as the bias on the collector is increasing. In the
region prior to the emitter barrier where a 'notch' potential forms signifying charge

a lation, we see the formation with increased bias of a region where
V(x)+Q(x) is relatively flat. Of significance here is that for values of bias

associated with the initial current increase the value of V(x)+Q(x) within the

quantum well is greater then its value in the emitter region. The current reaches a

maximum at the cross-over where V(x)+Q(x) in the enitter region and in the

quantum well are approximately equal. (Implementation of an earlier algorithm,

generally resulted in solutions oscillating between high and low values of current
when this condition was reached). While it is tempting to associate V(x)+Q(x)

within the emitter region with a quasi-bound state, this may be premature.

The distribution of potential energy V(x) as a function of bias is displayed in

figure 22, where the notch potential is deepened with increasing bias, signifying

increased charge accumulation. This is accompanied by a smaller share of the
potential drop across the emitter barrier, relative to the collector barrier region.

Comparing the slopes of the voltage drop across the emitter and collector barriers,

we see larger fractions of potential energy fall across the collector barrier.

Bias Dependent V(x)

OA
0..100v

0.3- 0.1406V
- 0200eV

04---0.o.6V4V
0.2 - ..-..--.-- 0.2110 V

-0.2

ISO ;0 ;0 ;0 10 t00~ 11,0 120 130 140 1;0

Manoom (rmn)

Figure 22. Distidbution of potential energy as a function of applied bias.
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Explicit in this calculation is dissipation which is incorporated through the

quasi-Fermi level. Within the vicinity of the boundaries the quasi-Fermi level is

parallel to the conduction band edge. Indeed, for this calculation the quasi-Fermi

level departs from the conduction band edge only within the vicinity of the barriers.

The quasi-Fermi level is displayed in figure 23 at a bias of 260 mev, where we see

that the quasi-Fermi level is relatively flat until the middle of the first barrier at

which point there is a small drop in value followed by a flat region within the

quantum well. There is a strong drop of the quasi Fermi level within the second

barrier.

The charge distribution accompanying these variations in bias shows

accumulation on the emitter side of the barrier along with charge accumulation

within the quantum well. The increase in charge within the quantum well and

adjacent to the emitter region is accompanying by charge depletion downstream of

the second barrier, with the result that the net charge distribution throughout the

structure is zero.

Variations in the quasi Fermi level were accompanied by variations in

density and current which were all obtained in a self-consistent manner.

Supplemental computations were performed in which the quasi-Fermi level was

varied by altering the scattering rates. The calculations were applied to the post

threshold case with values for the scattering rate chosen so to provide a large drop

in current. Indeed a current drop by greater than a factor of three was obtained

followed by a shallow current increase with increasing bias. The significant

difference leading to these changes was the manner in which the quasi-Fermi level

changed. Rather than the shallow change depicted in figure 19, there was a larger

change in the quasi-Fermi level across the first barrier, a result similar to that

obtained for single barriers.
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Figure 23 Potential and quasi-Fermi energy at a bias of 260 mev.

The calculations obtained for figures 19 through 23 were obtained from a

new solution algorithm that was constructed for the quantum Liouville equation

that permits a more convenient specification of boundary conditions, in particular

when the device is under bias. The algorithm is based on a reformulation of the

governing equations in which a higher order differential equation in the local

direction [(x+x)/2] is constructed from the quantum Liouville equation. The

reformulated equation behaves like an elliptical equation in the local direction

rather than the hyperbolic behavior of the quantum Liouville equation. With

appropriate boundary conditions, solutions to the two forms of the quantum

Liouville equations are equivalent. However the reformulated equation allows

construction of a more robust algorithm that provides desired solution behavior at

the contacts by boundary condition specification at both contacts.
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9 THE QUANTUM HYDRODYNAMIC EQUATIONS

A detailed description of the density matrix under equilibrium and

nonequilibrium conditions was given in the previous sections. Much of the work

reported there was a consequence of considerable effort at understanding the

nature of the quantum Liouville equation in the coordinate representation. As such

many of these results were obtained at the end of the program; with some results

particularly the RTD results obtained after the program was completed.

Simultaneous with this effort was attempts at determining an understanding

of the quantum hydrodynamic equations, as it was felt that these equations being

approximate in nature would find greater acceptance in the engineering community

as a vehicle for the design of multidimensional devices. A discussion of these
equations is not given here as an extensive paper along with several smaller

supplement al studies have either been published or will be published. These

papers form part of this final report and constitute part of this section.
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Uses of the quantum potential in modelling
hot-carrier semiconductor devices
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Abstract. Through Se use of ea--mpie. various of tis quantm poe•Wteal
mo examind for modelsng and Inte&rprelng he operation of semacooductor

1. Inroduction correction toE(x) The tam P.mrpresnts anequilibrim
ener•y term to which tde system relaxes [3]. To place

Quantum effects occur in devkA structures when the equations (1) in a familiar form requires additional
lateral confineent dimensions (the distance over which manipulation. and oue commo form is [4]

ninflcaut changes an denAty coccr) are compeaable to
the thermal do Brogie wavelength. It is Possible toAp.) ____) ~__ /3)
model quantum structures vl a quantum d neiy fro + a a
the rdingr equaeion, the Louvile equation or the
Wi ne equaio n. H owever.m od elit afthim es trud wa + , (X)+ . 0( )

has also evolved from tho uwe of a adt of des"a + Ce

hydrodynamic equations, which include corrections in a;,

the form of the quantum potential The mot familiar __+ _( __( + 04rT))
forms used involve the Bohm Potential (13Ia

/62\ 16 + (eAN A(Q() + V(x)

(p'AT 6(0 ) 4, 2(E - E,)
and the Wpe potential [2] - k +----- -- ) Tx V 0 Ch)

Q e.A w where Ala the thermal do Broglie wavelengh and Z* is
an equflirin energy. In the above equatons, the

For example usti the dnsty matrix lte coordinate quam potential Us been reduced by a acor o d••.
re aladom in which d O Is modelled by a alhough this eduction is a subjecrof acme debate WeFokke -Pstack contribution, die hydladynamo eqba- have taken this view, with otheis [S1 that this an

FomkerePofnCk contiuin the hyrdyaiceua 0tdnsable parameter, calculations belo* ilustraft thedons are of the form (3] ac of varying this Parameter.

*p Ii It is possible to determine the validity of the above- -0 (Ia) equaons for quantum deic by pufrmag oompambleahf, IX calculations with one of the full quantum transport

*ppd + 2MV(x) + ) + -0 (b) equations. In additon, It Is usdul to ask whether the
- x + + (lb) quantum potential aids in the interpretation of results& .x Dx r

The ull quantum treatment used herc involves the desity
a + P -(x) + a - ---(x)+2 0 (Ic) matrix (m the coordinate representation) [6 The attr

6 ) -2a x - W- -/---c- calculations include the appropriate Fermi or Boltzmann
statistics, althoug the moment equations discussed

wherep, is themean momentum, E(x)is themeo n kinetic below involve only Boltznann sttistics. When a com.
ecnrg and p(31 reprsents the ene flux [3] (which in parison between th6 quantum hydrodynamic equations
the dassical case represents the transpot of 'nery) The and the density matrix is made, Boltzmann stattcs is
Wiper potential is usually interpreted as a quantum assumed.
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2. 6ewAsm umnn diode unde eq Ibsmlm 3. Mose calcultlion

The 1M example i that of a Ga.u/AOa.s double- The nae example is a comparatUve calculation *long a
barrier (5 m breriers and 5 mm w4) Cesona0t tunnelling li perpendicular to the conduction dand of a MocMir.
strmucrew a nominal doping of 10"cm-s. This Foris dcv (fgure 2) the OaAs riinn "d-hand SidW
structure has a quad-bound state f 85meV. It is of the structure) Is 100 am long (doPed to 10"' cm-3)
antlipated that witin the quantum VA (4 would sad is adjacet to a wide-basdgup (300 mY)ron
ddaemine the qui4bou state. Figure I diplays a dopd to 101 Cm-2. Te b&A l0am of the widbado4 adP
blow-up of th region son nding the double-barrr region as undoped. The bydrodynamic equation we
structur• In gure I(a). the sef-consitet potential solved using the bohm potental with tlh 4n ree M

anery. V(x). the Bohm &nd Wigner quantum potentials values for the multilplitve constants: 3 (as in equalioas
are compared. It bs aee dot the %ob. potential is (2)X. 1 and9. Fgure 2(aV) show the density obtained krm
constant withl the wA at the quad-boud satvalue, the denity matrix. whie re 2(b) ows density
There is a small accumulation of carriers whoe value obtand from dth hyrodynamlc equations. Several
peaks in the caenr of &awhell. Pigw. 1(b) replaces V(x) points are worth emphasising The Msucture of the
wit the mean kitc me per particle for this density is the same for the three quantum hydrodynaulo
cmparson, itIs -m ta• t the best rpescnation Of this equations and or th densty matrix Clatloun. The
enrg is with the wipe potentialhe mlosenees of the value of the dcnity 6o the hydrodynamic e tiosM is
results wnds th the Wiper potential is important closest to tat of the desity matrix when the coMItant
for the strucure of the enery within the WeL is between I and 3. It should be mntioned that whie

the valu of the multiplcamtie contant was vaied by
almost an order of magpitude in these calculations, dhe

0.4 quantum potential aWc undoerwet CIM1aes and was
-fernot fo each of the r hydrodynamn equation
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The "a ezamjk of the wse of lb.. quantum, potential S. Concluesios
in modelling devices is that of a quantum well sr
calculation. For this calcublaioi a onese1anonal dlice In the above dAcuin we have illustrated the use 0(
Warugh tihe sou=rcego sq.shwing the plana doped the quantum potential as both an adjuno( for inteepse-
region in the wide-baandgap material is shown in liguire falion an.I as a tool for examining transport with the
3(&4 I the two-dlammulonal structure. thegatesits 20mam hydrodynamic equations. While calculations using the
anto the structure, which is othewise nominally doped. quantum potential have been performned (71, and
There.i a large concentration of carriers adjacent to the illustrate the significance of Its contribution to the density
wide-beadgap region doe to the placement of the distribution within small devices. significant advances
delta-doped rellion. The potential energ displays a linear will1 occur when one can model two-dimensional flow In
variation with charge depletion in the wideobsadgap aaoorr structures. Preliminary studies indicate that
region (figure 3(b))ý AN *(the density within the quantum realistic simnulations can be performed (8].
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(Receavd 7 February 1993, in revised fonm 6 May 1993)

Ahstrset--'is paper (i) examines through numerical solutions of the coupled coovae epwsmuaim.
Ucuvilek and Poisson equations, the use of the Bohm quantum potential to repesm t the equilibrium
distribution of density and energy in quantum feature " structures; (u) discusses the development of
the nonequilibrium quantum hydrodynamic (QHD) equations with dissipation through the truncation of
the quantum distribution function; and (ii) compares select ensults of the QHD equations incorporating
the Bohm potential to the exact Liouville equation solutions. The bod conclusio of the study is that
for structures of current interest such as HEMT only quantum mechanical solutions, or the incorpor-
ation of the quantum potential as a modilkation of the cassical equations will permit representative
solutions of such critical features as the sheet charge density.

NTOODUCrTION coordinate reporentwen solutions to the quantum

Advances in c g Liouville equation for the density operator p,,whose time dependence is governed by the Hami-
nques have assured the construction of nanoscale wo H:

devices with sharp interfaces. Concomitantly, new

device concepts have emerged, including resonant i /0l -[H, ,,] (1)
tunneling structures, quantum wires, quantum dots;
and varients of classical structures with quantum The relvant quantity in the Liouville simulation. is
features, e.g. HEMTs and HBTs. While all devices the density matrix p(x, x', t)- (xjpji(> whose role
are governie by quantum mechanics, many devices is similar to that of the distribution function in
including HEMTs and HBTs do not require quantum classical physics.
transport for a description of their basic operation. The procedure for asessing the quantum contri-
Nevertheless, quantum mechanics is required to butions has two parts Fbt, approximate and exact
provide key electrical features. For example, HMTs equilibrium solutions to the dissipationless quantum
sustain low levels of current at low bias levels; Liouville equation for a variety of structures, includ-
these currents are dominantly tunneling currents. ing a barrier, are compared. The approximate sol-
Thermionic contributions to current occur at high utions which arise from a new procedure, with results
bias levels. Recently, device formulations utilizing the similar to that of Wigner[3], are also expressed in
drift and diffusion equations and the moments of the terms of the Bohm quantum potential[6J:
Boltzmann transport equation were generalized to
include a description of tunneling currents (Ancona Qs (h'/2m)(d2()'/dx~l')'4 , (2)
and arate(lj Grubin and Kreskovdsy[2D. These whose physia is reed. Secon the
newer studies indicated that quantum contributions quantum Liouvinle equation with Fokker-Plnck
of the type first considered by Wigner3, could dissipation mechanisms introducdM from which
be incorporated as modifications to the more tra- a new derivation of the quantum hydrodynamic
ditional apFroaches to studying transport of carriers (QHD) equations are obtained. Nonequilibrium zero
through devices. Such an approach was taken by rrent QHD and exact Liouville solutions are com-
Zhou and Ferry(4,5 in a study of quantum contri- pared for a simple heterostructure diode configft-
butions to transport in MESFETs. How well do ation relevant to HEMT stuctures We confirm that
the quantum modifications of classical transport the simplest version of the QHD equations, the drift
represent actual transport? This question is addressed and diffusion current density equation, and its zero
for a limited number of cases through comparison current solution are modified as follows(l,21:
of (i) quantum "corrected" solutions with (ii) exact

______________________________ J(x, :) = pjdcT((v + aQs)/kbT + ln0)J/c•x (3)

ISupported by AFOSR. ARO and ONR. p =poexp-(V(x)+aQs(x)]/kbT, (4)

1697



1696 H. L GauwN et at.

where a is a constant, determined analytically below current density: j(x + C, x - C) = IAI(2mi)]O/O;
and in (I] to be a -1/3. More often a is chosen to
provide the best fit to exact results, and is thus (b)
determined from numerical simulations as discussed energy density: E(x + C, x - C) = -(A 2/Sm )1p/ac2 .
below. Any value of a other than a - I is of concern,
in that arguments associated with the single particle (9c)
Schrodinger equation, suggest a value of unity, at The above definitions are discussed in [7b, and in
e.g. (2). Nevertheless, we show for conditions appro. Appendix B.
priate to Boltzmann statistics, that the exact and
approximate solutions for a 0 1 are remarkably simi-
lar; and that solutions without quantum contri- THE A OX11rtT DENSITYrV MATRnX EQUATION AND

butions will not represent the local charge EQUILIBRIUM SOLUTION

distribution in barrier dominated structures. Finally, Numerical solutions are obtained from eqn (8). For
the results are related to earlier work on the Wigner interpretive purposes and for developing the QHD
function for mixed and pure states(8]. These latter equations, we approximate eqn (8) in two steps. First,
issues are addressed in the appendicu, which also we assume an infinitely differentiable potential, in
include a discussion of the numerical algorithm, which case eqn (8) becomes:

THE EXACr EQUATION OF MOTION FOR THE Op/Ot + (A/2mi)0 2p/OXaC - (2/1h)
DENSITY MATRUX x E [1/(21+ l)!]C4N+08f+ 0Vlax(W+ "p =w0, (10)

The IUouville equation in the coordinate represen- where the sum is over 0 < I < ao. Second, we retain

tation without dissipation is: only the first two terms in the expansion:

Op/Os + (12m)(V- .- V•.)p Opl/t + (h/2mi)a2polx6C

-(l/i()[V(Xt) -V(X',5)1p-0. (5) -(lli)([aVlVOx+(31/3)8'Vlaxlp=0. (11)

Solutions yield the time dependent density matrix Note: retaining only the term linear in C, yields an
p(X, X', t), whose diagonal components provide the equation equivalent to the time dependent collision-
density, and whose values are constrained by the less Boltmann equation; demonstrating that quan-
integral: fd' Xp(X, X)= No, where No is the total turn effects arise from higher order terms in the
number of electrons. Assuming free particle con- expanion of (V(x + C, ts)- V(x - C. )). For the den-
ditions along the Y and Z directions, the density sity matrix equivalent to the collisionless Boltmuzam
matrix, with A2 - hl/2mkb T, separates and we seek equation, and for aOpa/ -0.
p(X, X; ):

p(X, X', )= p(X, X', ) p(x +C,x --C ,)_ poexp-[C2lA2 + pV(x)] (12)

is an exact solution for free particles (no collisions) inx exp -[{('- y,) + (Z _ Z9}/4). () a potential energy distribution V(x). More generally:

Here 1, is the thermal de Broglie wavength. p(X,X',s) - pexp-- 2 /A 2 + pV(x))exp-[{(Y-
Equation (5) separates and the X, X' portion is YT + (Z - Z')})/4Al For a reference density
rewritten in terms of center of mass and nonlocal Pe, the Fermi energy -0-[/Plnf/N, where
coordinates: N-2(m/2xPh2)9. Equation (12) is equivalent to

exp[-{0(p2/2rn) + V(x))] (see Appendix B).
center of mass coordinates: (X + X')/2 - x; To obtain the quantum modifications, we recog-

nonlocal coordinates: (X - X)12--C. (7) nize that the classical carrier density and mean
Senergy density under =ero current conditions

Note:thetansformationisonsistentwithlbut�s are r fivey p(xx)=Pexp-LIv(x)J, and
not area preserving (the Jacobian is not unity). In E(x,x)ur(xx)p(xx)-,p(x,x)kkT/2, where
term of these variables and for free particle Co11- e(x, x) is the mmw kisetskerVperparckk, and that
ditions along the other directions, the governing eqn (12) can be recast as:
equation for p(x +•, x -C, ) is: p(x +C.x -C) - p(xx)exp-[2C'2 e(xx)/•AZ. (13)

4P/Ot + (hl/2mi)a2plaXC Equations (13) and (12) have the same content for

-(l/ih)[V(x +Ct)-V(x-C,t)p,-.0. (8) classical transport. For quantum transport the mean
AD rsults &rise from (x + C, x - ; nevertheless, kinetic energy per particle includes modifications to

we require expressions for current and energy, which the classical value[3]. The numerical studies below

are obtained from the diagonal components of the suggest that the effect of the quantum correction is to
following matrices: either pinch or stretch the density matrix along the

nonlocal direction. Equation (13) represents both
density: p(x + C, x - C); (f) contributions. To obtain these corrections eqn (13) is
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substituted into eqn (I1) with the resulting equation the Weyl integral, Wigner's form of the quantum
ordered in powers of C: corrections (eqn (25) of 13D.

Equation (19) highlights the quantum modifi-
C(4r(x, x)p(x, x)J1x + 2(-OV/x)p(x, x)) cations. For example, in the case of a symmetric

- (80 3/.P){(jr(x, x)&(x, x)/l3x barrier, classical theory teaches that density is deter-
mined solely by the value of the potential. Quantum

-(A'124)8'V/0x 3)p(x,x)} =0. (14) theory is predicated upon continuity of the wave

Thus separately: functions, permits tunneling, and teaches that the
density within a barrier can be higher than that

2M[(x, x)p(x, x)/Ox + (lOx)p(x, x) -0 (15) determined classically. At the peak of the barrier,

E(x,x)&(x,x)/Ox-( A/24P)a 3V/ax 3 -=O. (16) V 5-0,vOj<0,Qw<o and the density exceeds its
classical value. Within a symmetric quantum well,

Equation (16) submits to an immediate solution: at the ,enter of symmetry, V, - 0, V. > 0, Qw > 0
r(x, x) - 4(l + (A/l)9(l/1l2P)a2 V/Ox2 2., where and toe density can be less than that obtained classi-
t= kb T/2 is independent of position and the inte- cally.
gration constant is chosen to retrieve the classical
result under uniform field and density conditions. If COMPARSO OF EXACT AND AIPPROXIMATE
the quantum corrections are small compared to co, COimPAnI DITROON FUNCEDONE
the quantum corrected energy is:

, ) (x, x)p(x, x) The extent to which quantum modification rep-
resent quantum transport in structures under equi-

-[kbT/2+(A 2112)a2 V/ax11(x,x), (17) librium was addressed in two steps. First, solutions
were obtained for thle coupled Liouville equation (8)

which corresponds to Wigner's result (131, eqn (30)). and Poisson's equation:

For the quantum corrected density, we solve a re-

arranged eqn (IS), using eqn (17) for energy: a[i(x)aV/OaxJ/x = -el[p(x,x)--pD(x)J. (23)

[(A2/6)(a3 Vlax 3) + aVlax] (In the discussion below, the permittivity and effective

((A2/6)(O2 V/Ox2)+ + In p/Ox 0. (18) mass are constant, with values are those appropriate
to GaAs.) Second, the exact density computed from

For small quantum modifications the above inte- the Liouville equation was inserted into eqn (2),
grates (approximately) to: Qa was computed, and an approximate density

p(x.x) -- pe[exp -- [(V + w/3), (19) and energy per particle was obtained. The results
of part one and part two were compared. In all

where: calculations global charge neutrality occured:.
S- (h1/4m)P[O V/Ox 2 - P(OV/Ox?2J (20) f dx[P(XX)--PD(x)J=O. Two examples were con-

w (sidered, each at 300 K, where for GaAs the thermal

defines a Wigher quantum potential. For mall de Broglie wavelength is A -45 A In both calcu-
modifications eqn (19) becomes: p(x, x) f lations the nominal density was 10/cmir 3. (At these
p,[exp - PV(x)]{l - PQw/3}, which corresponds to densities gallium arsenide calculations necessitate the
Wigner's equation (28). use of Fermi statistics. These have been performed by

Equations (19) and (4) have the same form the authors[10J, and demonstrate two density depen-
although the modification is in terms of potential dent contributions to energy, one classical and a
energy rather than density. To the extent that the second quantum mechanical in origin. At lower den-
above approximations are of order h2, we replace the sities where Fermi statistics are not an issue calcu-
potential energy in eqn (20) with its classical density lations demonstrate that the effects of the quantum
equivalent: P V(x) - - In[p (x, x)/po]. In this case potential Q9 are qualitatively similar to the results
Q. - Qw, and eqn (4) is retrieved with a - 1. In terms discussed below, but the magnitudes of the density
of density, the energy [eqn (17)] is reepressed as: derivatives are smaller (longer Debye length) and the

E.(x, x) - [bT/2 - (A/24m)•O2 np)/Ox~p(x, x). quantum corrections am reduced.)

(21) Clsical NN-N+ structures

The quantum orrected form of the denity matrix The structure is 1600 A long with a nominal dopingusing eqns (13), (17) and (19) is: of l0"/cm 3 and a centrally placed 500 A, 10'5 /m
region. The variation in background doping was

p(x + C,x -C)- poexp-[L{V(x) + Qw/3) over one grid point or 4A•. Solutions yield p(X,Xj,
+(CIA{l+ •16) vlax}. (22) which in equilibrium is real and symmetric,

p(X, X - p(X', X), as displayed in Fig. 1(a). The

For small corrections, p(x + C, x - C) pexp - [(C/ inset to Fig. 1(a) is the free particle density matrix.
A)Y + PV(x)]{l - PQw/3 - (C/6)P1V/Ox2}, which as Free particle Bolzmann boundary conditions are as-
discussed in Appendix B, yields upon application of sumed; i.e. p(X, X') = Po exp - (C/l)2. All numerical
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F. 1. (a) Density matrix for the N+N-N+ structure with aticle boundary _o___tns, a obtaned

from the UouvilS equation (S). The physical dimension of the structure a 1600 A. requiring that the

density matrix, which is calculated over a square matrix, is of side 1600 V2. The center of mass and
nonlocal coordinates are indcated. Thie inset is the fo~e particle density matrix. (b) (-) Diagonal
component of the density mat&i from (a). (- --) Density as obtained from eqn (4) with a ,- 0; ( --- ) with

S= 1/3. (c) Self consistent potential energy for the calculation of (a). (d) Quantum potential forte
allainof (a). (e) (-) Enewlg per particle as obtained from the diagomdl component of eqn (9c)

for the calclation of (a). (---) F~netV per particle as obtainedl from eqn (24) with a - 1/3; -- )with
a - 1/4; (---) with a - 1/S.

to the exact solution occur for a between l1/3 and 1 /4. continuously (from near zero) to 500 meV, over
The significance of these results is that the quantum approx. 75 A•.
contributions are solely responsible for the ,spatial Figure 2(bo) displays p(X, XJ). As in the Fig. I
variation in the energy per patce and demonstrates calculation, free particle boundary conditions are
the presence of quantum contributions with classical assumed. The dramatic "hole" is a consequence of
structures. the barrir. Figure 2(c) is a fine plot of density. The

solid hiue is obtained from the Liouvilk and Poisson

Sk~k orkr odksequations; the dashed lines are from eqn (4) with
a - 02on d line) and 1/3 (sort dashed f.ie).

For this calculation the hwlq~ound density is flat Common to each calculation is a significant reduction
and equal to 1019/=', the stucture is 2000/ AIong of charge within the barrier, as well as charge ac-
and the SM1 spacing is uniform and equal to :3.33 A. eumulation on either side of the barrier. At theeds
F'qpme 2 displays the, nmuts for a 5W meV barre'r of the barrier the solutions closest to the Liouville
reisa analytically by. equation are those for a -= 113. The reduction

Vb..~x)- 5 nwJ(I+ tak~z- &)1b)12 of charge within the barrier is a consequence of
V•,,(x) 500eV[t + anh(x-a)lb}/2 the barrier, while the pwesnoe of charge adjacent

+ (I-_ tanh[(x - a2)lb]}/2 - 11, (25) to but outside of the barrier is a consequence of
self-consistency in the calculation. Its magnitudec is

where: at,-150 A[, a2 - 150 A, b ,- 50 ,A/3.80. dependent on the condition of global charge neu-
Figure .2(a) displays eqn (25), where Vwm,. increases trality. Figure 2(d) displays the potential energy
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Fig. 2. (a) Sketch of the hyperbolic tangent barrier centrally placed within the 2000,A structure. (b)
Density matrix for the single barrier structure with free particle boundary conditions, as obtained from
the Liouville equation (8). The physical dimension of the structure is 2000 A, requiring that the density
matrix, which is calculated ove a square matrix, is of side 2000 A/I/2. The center of ma and nonlocal
coordinates am indicated. (c) (-) Diagonal component of the density matrix from (a). (---) Density
as obtained from eqn (4) with a - 1/3; (--) with a -0. (d) Self consistent potential energy for the
calculation of (a). (e) Quantum potential for the calculation of (a). Inset includes (d). (f) (-) Energy
per particle as obtained from eqn (9c). (---) Energy per particle as obtained from eqn (24) with a..- i/3.

THE APPRUOXIMATE moNeQUuJaIUM DuSTfY of Fokker-Planck (FP) scattering. The motivation
AAT3IX; TIZ CONTRUCTON OF THiE QHD for FP dissipation is simplicity. When scattering is

EQUATIONS treated as in the Boltzmann transport equation,
utilization of the Weyl transformation results in an

The nonequilibrium situation, is considered within equivalent scattering integral, that is approximately

the framework of the QHD equations, which incor- dependent upon powers of C, and derivatives with

porate quantum contributions as modifications. The respect to C[10]. Under special circumstances these

QHD equations incude dissipation within the context take the form of FP dissipation. The equation of
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Fig. 3. (a) 200 meV barrier within the 6000 A structure studied with the simulation. (b) Density matrix
for the single barrier structure with free particle boundary conditions, as obtained from the Liouvile
equation (8) for a bias of -0. meV. The physical dimension of the structure is 6000 A. requiring that
the density matrix, which as calculated over a square matrix, is of side 6000 A/,/2. The center of man
and nonlocal coordinates am indicated. (c) (-) Selfconsistent diagonal component of the density matrix
for a bias of -0.2 meV. (---) Quantum corrected solution. (d) (-) Sellfconsistent diagonal component
of the density matrix for a bias of 0.0 meY. (---) Quantum corrected solution. (e) (-) Self consistent
potential energy for a bias of -0.2 meY. (---) Quantum corrected solution. (f) () Self consistent

potential energy for a bias of 0.0 meY. (---) Quantum corrected solution.

cated by representing nonequilibrium by a displaced where p, is at most a function of x. With the current
Maxwellan, exp - LO((p - pd)2/2m + V)J, and where incorporated as in eqn (28) the constrnwtion of the
the mean momentum, Pd, the density, and a particle QHD equations proceeds in three parts: First, the
temperature, are to be determined. The argument for truncated density matrix is identified as eqn (28) with
a displaced Maxwellian is the assumption of rapid the form of the equilibrium contribution given by
therludization. While there is experimental evidence eqn (22) (the potential is replaced by the classical
that some quantum feature size devices sustain strong density equivalent) secos4 the relevant transport
relaxation effects, such phenomena is not likely to be quantities are identified as carrier density, p(x),
universal. Nevertheless, as a first step in developing mean momentum, pd(x) and electron.temperature,
a set of nonequilibrium QHD equations we examine TE(x) - l/(lgkb); thWrd the moment equations, are
the consequences of modifying the quantum equi- obtained from a succession of derivatives, followed
librium distributions to describe nonequilibrium by the limit as C -* 0. In taking moments we note that
conditions. Within the context of the coordinate much information contained in the off-diagonal el-
representation, the Weyl transformation as discussed ements of the density matrix is lost.
in the Appendix B, dictates that the displaced equi- With eqn (28) the following quantities [from
librium density matrix (gnerally non-Maxwellian) eqn (9)] are relevant to the moment equations (with-
used below, is obtained through the following modifi- out the equipartition contributions of the Y and Z
cation of a zero current density matrix: directions):

p(x +C, x -C)--p(x +C, x - C)exp + [2ipdCAl, (28) j(x, x) - p(x, x)pdlm; (29a)
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E(x.x)-[• +/2m +kTE/2 given by eqn (21). This is guaranteed with

-(A2/24m)O2(ln p)/1x2 p; (29b) 2mni/. Thus eqn (34) becomes:

Pi(x, x) - [p, + 3pn*, T•k OaE/at + ao[P/nm)(E + pk, T)]ax

- pd(h1A4)aOOn p)/axZ1p. (29c) + (ppi, m)8[Q,13 + V]IOx

Equation (29c) is the diagonal component of - p(A2kT/6)( 2(ln p)lax210
P'3 (x + Cx - C)-(h/121)a'pl/O, and represents
the energy flux, (as typically appears, e.g. in the third x (pdlm)lax + (2/1)(E - 41l - 0. (35)

moment of the Doltmann transport equation). The second part of the FP dissipation involves a
Equations (29) and their dependence on derivatives relaxation to a non-zero thermal energy. 4 above is
of density are valid only in the limits discussed the same as used by Woolard et a/.[131.
in the above sections, and represent modcatiouns to The consequences of the above approximations as
classical situations. In this swIen it & important to the appearance of the quantum potential with the
note that dte derivation of the quantum potential factor "1/3". (The situation for Fermi statistics is not
in terms of Qw explicitly involved the carrier tempera- addressed here.)
ture. The Bohm potential Qg, is independent of
electron temperature. The consequences of using Qg
rather than Qw, in the QHD equations should be C MOMPA R I QUAllON COMPIJTATIONT Sexaind.COMPAREON TO 111K EXACT souYNoII
examined.

The QHD equations are obtained by taking suces- The development of the QHD equations, is pe-
sive derivatives with respect to C, as defined by eqn (9) dicted on future use in the design and understanding
and taking the limit C '*0. The QHD partice, momen- of multi-dimensional quantum feature size devices.
trin and energy balance equtions, are respectively: The degree to which this is useful remains to be

determined for nonequilibrium phenomena, and the
Op/Ot + O[PpdmlIax -0, (30) work of K4,51 represents an important beginning.

a(Ppd)at + 2aE(x, x)lax + (aV/ax)p + ppd/T -0; Another relevant case is the evaluation of density
(31) across an abrupt heterostructure region, as occurs in

either a beterostructure diode or in modulation
MElat + l1(2m2)8P•l/ax doped FETs. While the sheet charge density can be

+(pp,8 m)aV/Ox +2E/r -- (E/m)p =0. (32) obtained from solutions to Schrodinger's equation.
the incorporation of such a calculation in a quantum

We rearrange eqns (31) and (32), noting that the corrected standard set of device simulation equations
quantum correction driving force is bnpliclt in E(x, x) has only recently been addressed. We consider this in
and Pc"(x, x). Using eqn (29b) for E(x, x) and noting assessing solutions of the QHD equations against the
that afpO2 In p)lax~lax - -(4mr/h2 )p~oQ ax, the Liouville equation in the zero current limit. It is noted
QHD momentum equation is(2]: that the use of an abrupt interface violates the

a(ppj)lat 4 a(ppilm)ax + a(pkT)/ax following conditions regarded as the basis for the
development of the quantum modifications: the po-

+pa(Q&13)/ax +paV/ax +ppd? ==0, (33) tentkd is conthoumm, and the vale of Q I smal enough
which differs from its classical analog through the to be regarded as a "correction". It my be couwec-

presence of QJ[2J. When the first two terms an tured that the use of quantum potential has more

zero, and the electron temperature is spatially inde- generality than that uncovered in the above deri.

pendent, the drift momentum density reduces to: vations; at this time there is no justification for this

PPd=- kbTPa[(V +Q13)lkbT+ln(p)1/ax. Then caim.

for a - 1/3: and J - -eppmdns, eqn (3) is retrieved; The computation is for a 6000 A structure with
for pd 0, the density, as given by eqn (4) isa constant 101/cn 3 doping. The grid spacing for thefolutio pd - 0, the otensi the form of the scastera Liouville equation was constant and equal to 7.5 A;
solution to eqn (33). Nte: the form of the s e the grid was nonuniformly spaced for the QHD
term in eq (33) identifies tefrst pnf calculation. A 200 meV abrupit barrier is placed
scattering as a frictional term (see [VD. ( ct) th fight half of the structure, as shown in

For the energy balance equation, using eqn (29), a ) the shhftof te space as profileq 0)bcoe= ig. 3(a). The seif.consistent space chargprfle
eqn (32) womes: were computed for two values of applied bias

E/lat +a((pdm)[E + (plp)(l -( 1/6)Oa(np)l V•, - 0.0eV and -02 eV. In both computations
x OxZ)J}lOx + (pplm)V. + 2E1r -(E/lm)p -0. the quantum potential was finite within the vicinity of(3- ) = the interface, with structure -imilar to that of the

(34) barrier problem discussed in Fig. 2; it was zero within
To determine S, we note that it generally depends the vicinity of the boundaries. The two dimensional
upon x, as does t. In the context of eqn (34) we zero current density matrix for VO - -0.2eV is
require that E relax to F9 which is the pd = 0 value shown in Fig. 3(b).
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Fig. 4. Schematic representation of the characteristic directions with respect to the gid points.

Lne plots of the density matrix for both the exact subMARY
(solid line) and quantum corrected solution (dashed
line) are displayed in Fg. 3(d). Note the aocumu- This study assessed the introduction of quantum
lation of charge on the narrow baudgap side of the modifications of classical transport, with the results
structur followed by depletion (with non-negligible indicating that quantum corrective transport is useful
values) of charge on the wide bandgap portion of the under certain circumstance and that many simple
structure. Under bias the edge of the structure is device studies, such as those for HEMTs would
depleted of charge. The potential energy distribution benefit from its incorporation. It is likely that such
for the two values of bias are displayed in Fig. 3(e,f) corrective transport considerations would also be
where we see that the discontinuity in potential is valuable under nonequilibrium conditions particu-
equal to the full 200 meV associated with the barrier, larly in evaluating transport across heterostructure
The character of this solution is similar to that at the regions. It is important to note that introduction of
edge of the hyperbolic tangent barrier shown in the quantum potential in a generic form of the QHD
Fag, 2. In particular the quantum poentrial is positive equations is not nw. it has been linked to density
(nptive) to the left (rit) of the metallurgical factional theory, as discussed by Deb and Ghosh(14]
boundary. The comparati density and potential who also ident*y the force as being of quantum
proffies ae extranely dose and attest to the confi- origin. Bohm and Hlieyf15, point out that an essen-
dence of the approximation, for this type of structure. tial new feature of the quantum potential is that for
But caution is in ordel The excellent agreement for single particle Schrodinger fields, only thef om of the
the calculations of FWg. 3, bua the les certain agree- Schrodinger field counts, not the intensity. The force
ment of Fg. 2, indicate that a c ,dful case-by-cas arising from this potential is not like a mechanical
assessement may be necessary. Nevertheless it ap- forceof a wave pushing on a particle with a pressue
pears that obtaining representative charge densities proportional to the wave intensity; rather the force
necessitates the inopoMration of quantum effects arises from information content, e.g. structum rather
through such additions as the Bohm quantum poten- than value, of the wave[lSJ. Bohm and H-iley[15]
tial. Alternatively, realistic device simulations must distinguish this force from the Madelung[161 hydro-
resort to a full multidimensional quantum transport dynamic model in which the particle is pushed me-
calculation. chanically by the fluid.



1708 H. L Ostime et a.
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tiom with F. de Jang& G. J. arate, W. Fresley. A. Kriman. iutic equ (AQ). Along the boundary X - L1i. p is com-
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14. B. M. Deb and S. K. Ohoeb, The Shk-Paroic, +[iJ]([V(X,)- V(F').,IIPL,- 0, (A10)

Density In. Physcs and Carmirtry, p. 219. Acadenmic wheire M. irepiresents an average over the grd cell. Depend-
Prem, New York (1967). ing upon the form of avereingchosen, eq.(A9) ad (AIO)

15. D. Bo3hm and B. L Hiley. FouvAnSom Pkys. 14. 255 form a system of 2 x 2 block tridiagonl or block diagonal
(19t4a algebric equations that can be solved at ,t =-Jf1fm know.

16. L. WMadehl, Z. Jhs 40. 332 (1W6). valueat " -j - 1. Thlus, the solution procedure can be
17. T. R Govindam H. L Grubs. and F. J. DeJon. Proc. marchedefrhm boundary conditions at X- 0, in steps along

1991 NASCODF. X', to Z'- L. Similar procedures can be utillzd for eq.
It. M. A. Stroedo, S9p •er Mkaw.n cr. 2.3 (19W6). (A) and (AS)

Self-consisstecy is included in the analysis by iterating the
APPENDIX A soltio of th desity maix equation with the so10tion of

Poimon' equaion to convergence, by suomieve ubsti-
SoW• i.. Procedure tution. For this purpose, Poisson's equation is writien in the

For conveience of solution and determining suitable forms

of boundary conditions, eqn (8). is ewritten as a coupled (O{ (x(AV)/Olx)lx}" + (Opla V)&VM
first order system of equations(lk - -({ [(x )V lxyax)i-c}- (xx)- •(x)r, (All)

u(X. X') + [IA2nv][OpIOX + p/OIl- 0 (At) with v-'- V + AV, wherex is the iteration number. The

Op/Ot + lOulOX - au/OXl second term on the left hand side of equation (All)
to accelerate convergence of the iteration, wherein ap/lV is

+[l](g(ZX)--(X"',)iP -0. (A2) evaluated at x either numerically from previous iterations or
Equation (At) ddine a(X. r, t; equ (A2) is an alternativ analytically, as aplV = -p(x. x)/kbT, for Baumams .stat-
foresm tf eq () afLer eacometing for five partIcl conditions isti. A 3.point centered finite difference approxmation to
along the ra zd Zdirecos rewritten ter-ms of. and p. (Al l) results in a Iridiagasl syslem of algebraic equations
The characteristic diectiom for eq. (A) and (A2) amr that can be solved easily and lciently for AV, wh is the

x - (I + X')/2 - constant (AS) minentma in V between iterations..
-The Ai step of the iteration procedure consists of

C-(Jr-X')f2- ustnt. (A4) assuming a distribution for the self consistent potential

In trmof the charactristic directdm x and C. eq.. (At) (typically. ro everywher) and solving the density matrix

and (AM) can be written a: equation to obtain the demity distributim Based on the
computed density. Poisson's equation (All) is solved to

u(X, X) + (UtI2mIaplOx -0 (AS) update the self consistent potential distrution. For the
p/mput0taou of this paper, the analytical expression for

a~la• + IK + PltV(XO-v(x',' -o. (A,6) aplaV was u tid. For cas where aplaV is computed
Stasble boundary conditions for eq.. (AS) and (A6) are numerically, several iterations (typically, four or five) are

the specification of p and # along the boundary X '- 0 and required beore a reliable estimate for the gradient can be
the specification ofv along the boundary X - L/,/Z, whee computed. During these initial iterations, the second term
L is the length of thedevice. AlongtheboundaryX-0,p in equation (All) is eplaced by a term of the form
is specified s the complex conjugate of p(X, 0). since p is -R(x)AVl(:{Ax)lj (Ax is the mesh spacing. At f 50) for
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CG mINIMU 1Mhis UM coulod be tllimd for al itarationa. wich upon application of eqn (BI) yields the equation
Sbeta Im Im is Wo rapid. Sala•wdiol. to hi equation folowing eq. (22l
b used lao upiSd the s conswiewt puwatiall based upon The relation betwem the denity matrix and the Wisher
whicths densty maUtiM equation is solved agi.. The (unctio e9tnds to obeervables, pMtig a cocse dei-
ierations an repeateud t th deast aW pottial ditr nition Of the afoaed matricm. Deining cwrrent ,,iy,
bution convrlp to the iffl coitent solution. For the erargy deusity and tird mawoa matrwk-s respectively, as:
computations IpI -I I I hee, six o le of rcsidW M•
duction was obtained in Io than 10 iterations. J(x + C.- )- 2/(2( W)

c BJ _.d'p(pl.)Y.(p.x)exp[2ip-C/Al (36)

E(x + C. x - C) - 2(/(2xA)W'

Relgdom of Resul#ts o the Wlgwe Forxusulwkn
The coamecon between the dcmity miaz im the cootdi- fJ d'p(pjp•2im.(p, x)exp(2ip- C/• I (37)

re- representation and the Wiper fuedn in through the
Wayk-pe treanormatio with ornamaliitions pecul to itx + C. x- C) - 2(IK2x)i'
the problem of interest. For the density matrix

p(z + C. x - )0 - 2(/( 2[ 1 )]i x J_ d[pg(p, p)V.(p., x)ezp(2ip-Cf/A. (B8)

xf" d'V.(p x)exp(2Ip-C/kAl (31) T tdsdis c• od asttethevalidityofeqns (9b) and(9c).
The demiativwddmition ofthe third moment Isee discussmon

where the factor of 2 amounts for the fec that ecu fllowing eq. (29M)M follow dircty from the above. Note.
o u stat an hoM two cetron, The inverse trma- If the distribution fuction in eq. (31) is for zo current,

fornmedo it: and a fite current Auction is obtained fromf.(p -pox)
then the no current and inite current density matrix are

f.(p~w)-2'/2Jd'Cp(x+C.x-C)exlA-2#p.C€I (32) related as eqn (28).

where the factor V a consequece of the deinition of the
nonlocal coordinate (ew equ (Tt In thin tansformation it APPENDIX C
ia asrted that the Wiqpe function and ali necessry
derivatives with respect to momentum vani as po + 00. Pure State Result .d a Compvarisn to lafrate,
NOWe (a) js(x )-j(l f)P!,,d~pf,(j~w); (b) nsbsti- Grubbs r.id Ferry(S)
tution of eq (12) into eqa (32) yieds the results:
f.-mexp-P((p2/rn)+V(x)-EF}). Thepure state res u ot curreot, energy density and third

momat my be obtained a follows. IExpmr the wave
Mh Wpwer apti• in ding FP sat•eritg, as discussed ufit a s ons yTtz t),-p(x, )expi(xe@ with p(xt)-

by Stroscio(181 i. W/lax, Then Sc'rodinves equation, AM/a -

aJl +(,lmWlax -(h2/M)127/0x 2+ V-I (x.)IY, which is oMle is newfit-
A 14.' +- xten as two real partial differential equations:

+(lI/)2h) 4• d •dx'f '.4x) P/h + -J lax --0 (Ci)

x IV(x. 1) - V(xW, ,jexpP(,P -P*)X'/AJ a(pp)10 + 28E....,dax + pa V/ax - 0. ((0)

=(Ift)divjln +ZVt0% (31113) where
whe a j in the main alxt qa si vriations are allong Jsa.a,•(x, 0 * p(x. Op/m (03)
the x direction, MonBolmai tittics apply, nd momentum E(x. d s *p3l2m - (A2/Siu)82(Jn p)lax'ip. (C4)
variations i aI three dimeons are aBowed. The co-
efcients and • an chosen a is the density matrix sudies While the content of Schuodingers equaion in contained in
For transport in one space dsmwion it is diect to demon- eqns (CI) and (C), an expression for the time dependence
strate that the interal in eqn (B3) reduces in the dassical of the eergy may be obtained through the time derivative
cae to OV/ax)(allfp). To second order in A. the Wiper of eq. (CA) and judicious e or eqns (Ci) and (0). We
equation: find, with:

Wfas + (P Im)aflax - a Vlaxaflap P& ,ý X, 1)

+- (,2/i4)(03 Vlax')d'fl• . (i/r)div,[fl+ 5P (31114)' (p'- ('/4)(3pDVp)lax' + /Oplax2)p (C0)

The lI hand side of eqs (2) has bee, discussed i (1.21.4 *E&.m,•lA + (/11,2N2)Otn.,,Oax
Aplcto of the trnsomation, eq. (31), yieds eq. (11). +pl.SlxO C

In the abusene of dwisspation the appresiniate Wipe +(PP1ri)8 V/aOx-0 (CO)
disributinafuct tosecondorderin•Ai[ W'p et3se, Note the differeness between the pur state deiitious
ei eq. (25)1 (eqns (03) ,C4L and (CS)& and that of eqns (29). For

fsexp - pp2/2n, + V(xMl - (,1'#/4)the pure state: thee I te abwomc of a sewperewe dMep-
deuce, the factor of 3 & absent, a.d tsere i a wietllyx ((82Vlax2- (aVlax)213)-iP(plll3)a8Vlaxl} (35) a o..
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Abstrad

This sady describes the evolution and implementation of a set of quantum balance equations for eamini
tramport h mesmcoscoc sucture

Key Wo"rd

Wipa fnctiona quantum -oen quantum balance eudu

d�Inrodection

Thkis stud describe the evolution and npeenainof a set of quantum aln eeqaon reamig
transport~Mw,.L Ia. unsosoi stucurs bye std smtvt a perceived need for san itmulvel accssb set

atidlm onlquantum it t t Peha the sef-consisten• calculation ofpartice
cunrrenot adcurrent desiy.Te 4Wa is the development of a set of quantum hyrdnai quaton that
retkuce to the 'sanle atil equtaes[ for a pure sate, and the classical hydrodymm ~iceutions (J n A -
0. As discussed blwthsgoshaebeen partially met.

Pune State and Cliassical Moment Eqluation

The hyrdnmic equationi foar a pucre stat, for single particle trampoErt, spatial, variations once dimenfionl,
And awlsia oenilUx4ae, with O(x~t) J pesp(jS(x~tYa 1 and Pd - 8318=

-t, +Jx(p/m)0 (-)

J0Pd)+8z(pPd'/3)+Psx(U+Q) - 0 (2)

Q - -a't2mn~p. 1 4p(3)

tra~or and) Tphefl Indpenen emectiv -qain are shgl hn

is + i(PdJpM) - 0 (4)

st(,opd)+ax(ppd'/If)+psxU+,8t.pkl) - appd~oo (5)

atW+e(dw,/p ) + ex1 (.'ikTnm) +(PpdVn)BxU - 8Wmll (6)
W - 3pkT2+ppd'I2m (7)

It is wortwhilA em in that tht above equaion involve three dimensional mmnm acel oneation
with ~ " `pdlvraheicl n dirwetion sandotht densit and momentum now represent particle density~

The er.nota .n the above qiuat is a xx. 8l/0, etc.

Structure of the Quantum Mechanical Equstions

If the qurtoantumiw ý I 4

The non-eq*uilbim distribution function is constructed (41 from the 0oI Na fbmdsrutn
function obtained by WIgne (S51 and discussed moe recentl by Ancona and Whirte 161

fw- e')-fi12m+U]{1-2n(q x'U.(e1 U)'I2)93..Q.Ppx1 'im)8xU/3} (8)

Inequation(S),p - =ik,a - a2,*s2m,asndp9 w AD+y Ps

i- ditributon functio Involve replac(ing the potential and Its derivatives

p - 2(lAs)sff'fw(xp)d'p - Neq4UEl-2m•(,1 1U-(aJxU')2)13] (9)

where N SP2Am 2,')3/2 .After thatxU - "(xp)/(sp) + O(a).asdIXIU"/P + 0(a), it is a directmatterto

1071
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-o (,piN)eap(-P',"2J + (,./3$)-qX1, 11Xe1 {((e,./,. }) + O(.')l (10)

Note.- when equaton (9)lis substituted into eqatio (4), with U Mrersentin the equilibrum potentisi.
eqain (IXto order a.isretrieved.

To see what equation (10) offieu consider the steady state small signal Wigner funaction within a relawatioa limse
approximation; and to second order inn a161,

fw - fo-vw(pm)ozfo.(OxU)8pfo+(,*,i24Xx'U)8p-fo (11)

Inserun equation (t0) into (11 the following key resuts emeg: ff$dsp=f$od'p and forj J -
-(2a• )s)w(p1  )d' p:

jx -"•{(P(U+Qs3)+11 (kTP)) (12)

which wa tim obtained y Ancom and bafre 6!. Here, p- er/a. While this remit is consistent with the
general pbiosopjay ofofthis sectionthe factor of3 onthe uatM Potential needs

Sotwlod rao (10), the factor of 3 is retained fort O~mentof the

Moments of the W'gner-Boltzmau quation

"Mn qumuum momU equaion (we also E) ave been obtained fr the WB equaton• itoudous to order it I-, and for a s s i d isriuta function In which p in equatio (10) is relae by
p-p.he WB equation of motion is:

htfw+(Pa/m)fw (xU)%pfw+('tM24XeaxU)'p'fw - gw,€ol (13)

and the firs three moment equato orrespondiag to that of equaions (4) through (7) am

tP +lx(pd,/m) - 0 (14)

at(PPd)+kOjpd'flm)++px(U+0l3)+ex(pk1) -"epPd,€o (W5)

8tW + 8x(PdW/In) + 8x(PdpkThn) + (ppdfm)x(U +Q 3)

-(o 2Im)@x{(()PYp}ez(pd(m) - SWcol (16)

W - 3pkT/2+,Pd'/2m-(p*'124m)8{(1xp)lp} (17)

Equaton (17M) ad equo (9) for density has r qummm anical mthe disa(ssoosi
folowing o equaStion n g MDefer.aending to the above results It is mp to establish a couidence
Joe d in teua nm baace equdati. To this end the enrlmoment2!ý eqaton sor tiopn hada

diqmtcucitrslo[J srecaled Stroado's. result whl spcii to -a -hu spc htIdds Pace
diesonwn n momentum direction. veispthose of ft an* sdnsoutraed below. In this case,

borrowing the notation of M8 within tefs wikof the d s-e W wfunction msed herein, itIs
sudaghzfoeward to first show that:

p <(p-pd)' > - m(1- (2*MXex{(asvY,}j/ (18)

<P(P-Pd)4 > - 0 (19)

from which reference (81 equats (lOs), and (10b) when combined with (10a) yield equations (14) and (1) Of
this sftud, where the = lisin Iegras awe treated WeAecl. mnerr m aw ac qaini rae

I hnmbiped adt~ a inIfm the contant equatiol his= In~e thi pr eu• The neu-t o~this haon e
dimedonaphoepwev.nerg Ca balance equation of this stud, W is replaced by:

V'- pkT2 +ppd'/2m-(P* 'f2m)ex{(expyp} (20)

From thbepo oview of devic modeli it is pointed out a quantum corrected qusi-4Fermi ene can be
de fed utng UU+G1 ktjnfr p w her sarference deasity, the an 1ntdensityineqsation(12)

can be writtenasj-pp'VE (61, and;;=a~u (15) an (16) can be reeareused ac

8tppd)+*Zppd'/M)+p "xE -ppdMU (21)

StW+x(PdW/m)+a 1 (pdPkT/m)+ NPd6 m)x1 E
4-'p2Il2m){( 1,p)/}jj,(p&m) - WM (22)

In the above form it app arsdothedy cof the uaportamegoverned by anenera However, E
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Anticipated Solutions of the Quantum Balance Equations

We focus attention on the sin le particle pure state equa•tons, whHere of a zero tm derivative t the
momentum balance equation implies that S(x,t) - S (x) + S,(t and p(xt) - p(x). For zero time derivatives,
one spaee atnyields ('• a. a derivatie of the ective mas) energy conservatim pd'f2z +
(U+Q) - Eo and constant ity current, Ppd/m - J, where E. and J are inttinconstants.
Usin.g thedeinit~ion of the quantum potential, energy conservation can be rewritten as:

x'J p +(2m/a'X)(Eo-U-(mJ'f2p')Up - 0 (23)

For bound states, J - 0, and equation •23) is an ¢iunvalue problem, one that in the cae of a resom Immuel
structure leads to q-bound states, urther undzero current conditons, with Eo representing the
cigenvalues, Q - -~ U, and the values of Q are spatially dependent and, in some ces. are appronimately
equal to the bound sae.This result will be promianl dslae in the discussion below.

The "singe partie chrdiner picture Is limited, in that bedipi s it does not permit a directtrasition trstion to a Mu r when Contacs are considered. For manpk in lOah e of
multipartide transport with electrom moving ballistically within the N- region ofan N - strcuxe, the
mean carrier energy and velocity increase frmn the cathode to the anode. Conservation of(u current
requires that increases in veloaty aem by decreases in particle density. Thus in the ibme of
dissipation there will necessarily be chaire at the downstream anode, unless dissipation is present in
the interior of the device. Iff the asstumpto is made, that the physical contact are boundaries where the
numbers of carriers at the cathode and anode are equal, then scteigwithin the binerle of ke streeimr Is
concepgtually necessary. For the hyrdnmcformulation of the sige partice Scbrodhiper's equation, there
is no meaning to introducing N + cthode ad anode reglomn, sie we are dealing with a single particle.

In that dissipation is an essential feature of transport in devic. the quantum balance equatims reprnt by
equations (13) th=o 17) form astaring point-for the simulations to be discussed below. To date, our
simulations incld two moment equiations, sand Poisons equation. T'hese have been solved for a
spatially dependent effect mas, and for Fermi statistics. Here since we have neither generated a set of WD
moment equations for a spatially ependen effective mass nor have we ,obi a displaced Wigner f
that satisfied Fermi statistics, we have Instead -athed on these contributions. Further, we have treated the
factor of3 Wassociated with equations (14)ad(5) as an ad*ustale parameter that reflects the statistical
distribution used as a basis for the calculation, as discussed in [6], and have replaced it by unity. In this cue
with v - p^/m, the continuity equation is unchanged, while the momentum balance equation reands:

a tv + 8x(pv,) + (p/m){[S,( +0)1 + [(pv',2)-(NkTr,I1,p )J]St m} + (7d3)xNkTF./, +pvr 0 (24)

whee bax) (d i n fx~(rez•. Jdxwheethintyrtion~draongueis cx -.-'(i)def -,,lmpllcltl

isaositio ,apnd intprodingtivitermnd fuU+aQoktion whdopgeveaLizaon-- banda _ e
tranoriation dtw scussed above the xA moetum bnal ranc qutons wruedin007+.a,

Equation (25)ois cope teow th e eutoofo ntinuity aond Pissns equation, with Uesn x) repesntngl thrres
condctioe bn enuetrgy.l aTh henterostrhtue s• repe sented byteAndero rule : Uo -of -xb ) whrt esre d (X)ias

• mis a position deed pritlvty an d pbias, as poesitio d 'epedn doin leveL Fo cn ducio .baud."
vaitonstmhv o bete n Gastand A 1 a sthesiu fhollown relatio nshipswee use us '-.6 +0Jz LB -

i~tr wll q~ou• l• • d~l~ion•t ~mm c aluatoyr'ns utsui

The qcalcul ationta s discussed beowar fogrte stucur showen in rgue o, with r. esonan tunnTellingem• barieats

oitheo bias is increased the disistraibut ionva of.ee is suchtat atumlv protenatile 20%d to th t•.rnag dnropwa~

rneinesninanidefrom the seon barrier. Thectare diwstriuon gie4shwaregio ofcarrier wc~ulthin upstramre 0e

the~~~~ ~~ bare+hticesswt nraigba.a oe h hreI h eLWiedfeetbudh
conditionshave not eestdd theerslssol eeteeysniiet h ona~odtosa h

touxe nti thedepeton laertmoues thehaijpdrgonu1lc hn teeeto est

downsitremof th eergsecond barrerosgraually increarsesnand bythe dpein r uegio Uisap ears. ýwer *i
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10. ELECTRON AND HOLE TRANSPORT

Multispecies transport is part of the density matrix algorithm with
applications to beterostnzcture barriers and diodes. While extensive work on

electron and hole transport in underway as part of the ULTRA program, some of
this type of activity has been published and forms part of this document, and is
incorporated into this section.
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Structures

by H.L.Grubin

September 1992

A. INTRODUCTION

When a device physicist studies high field transport there are several issues to address. First,
what is the momentum space kinetics, and second what are the high field dynamics in devices?
For much of the early phases of device studies in which length scales were of the order of tens
and hundreds of microns, a satisfying picture often emerged in which it was assumed that the
space charge distribution did not affect, in any significant way, the kinetics of transport. In this
picture the semiconductor was represented as a material with a specified field dependent velocity,
which in the case of GaAs sustained a region of negative differential mobility associated with k-
space transfer. As the structure length scales decreased, it was clear that the separation of the
kinetics from the space charge contributions was no longer possible, and a more complicated
picture emerged that required the use of advanced numerical algorithms for the study of device
physics. These algorithms, however, depended in a detailed way on uncertain parameters that
were used in the k-space calculation. This was the best we could do; and today when high field
transport is considered it is most often examined without respect to device configuration. In the
discussion below, we take this viewpoint.

With high field transport considered within a device context, the ternary alloy AIGaAs can be
regarded as an enabling material. For while AIGaAs for a range of aluminium mole fraction
possesses a region of negative differential mobility (NDM), other samples possess superior NDM
regions. A major interest in AlGaAs lies in the fact that within the Anderson rule, its electron
affinity is significantly different from such materials as gallium arsenide and indium gallium
arsenide. This, in its simplest version, was responsible for the presence of barrier structure
devices, and the earliest AIGaAs/GaAs devices were among the first band structure engineered
devices. While a host of AIGaAs/GaAs devices have emerged as a result of barrier engineering
we will focub attention on only several versions of this enabling technology. The structures we
will focus on are Gunn diodes, AlGaAs/GaAs HBTs, AlGaAs/GaAs MODFETs and
AIGMAs/GaAs BICFETs. The emphasis will be on transport. The following will briefly review
the high field k-space transport properties of AlGaAs, and then turn to high field transport in the
devices mentioned above.

B. HIGH FIELD BULK PROPERTIES

Electron transport on the AIGaAs alloy depends in a detailed manner on the numbers of carriers in
the r, L and X portions of the conduction band. For moderate values of the mole composition of
aluminium, and rt low values of electric field the electrons are dominantly in the r valley. As the
field increases and LO phonon scattering no longer effectively removes the excess carrier energy,
a certain fraction of electrons, with the assistance of phonons, transfers to the subsidiary L valley,
of which there are four equivalent valleys. The rate at which these electrons are transferred
determines whether negative differential mobility will occur. At further increases in field the
electrons can also transfer to the next higher valley, the X valley, of which there are three
equivalent valleys. Transfer between any two valleys including equivalent valleys occurs. The
specific properties needed to determine these transfer rates are listed in TABLE I, where the
density of states effective mass in the table is md =- (ml2mn.di,)'I/3. (
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TABLE I Properties of Al.Gal-.As

Parameter GaAs AlAs Al.GaliAs

Static dielectric constant e, 13,18 10.06 13.18 - 3.12x

High frequency dielectric constant e.. 10.89 8.16 10.89 - 2.73x

Band gap energy E. (eV) 1.424 2.168 1.424 + 1.247x (0<x<.OA5)
4.07 - 1.lx (0<x<0.45)

Indirect band gap (L) 1.708 2.35 1.708 - 0.642x

Indirect band gap (X) 1.900 2.168 1.900 + 0.125x + 0. 143x 2

Electron affinity Xe (eV) 4.07 3.5 3.64 - 0.14x (0<x<0.45)
1.900 + 0.125x + 0.143x2 (0.45<x)

Density of states electron mass m,

r valley 0.067 0.150 0.067 + 0.083x

X valley 0.49 0.34 0.49 - 0.15x

L valley 0.22 0.26 0.22 + 0.04x

Acoustic deformation potential B (eV) 6.7 5.5 6.7 - 1.2x

Phenomenological def. potential Ec (eV) 3.6 2.9 3.6 - 0.7x

Intervalley def. potential D(ij) (eV/cm)
DW,X) (0.5- 1.1)x 10'
D(r.L) (0.15 - 1.0) x 109
D(XjL) (0.34 - 1.1)x 109
D(XX) (0.27 - 1.1) x 109 1.47 x 109

D(L.,L) I x 109

1.0 phonon energy (eV) 0.033 0.050 0.033 + 0.017x

Intervalley phonon energy (eV)

(I'•X) 0.0299 0.0299 + 0.0175x

(I"r*L) 0.03 0.03 + 0.0134x

(X::L) 0.0293 0.0293 + 0.0181x

(X•*X) 0.0299 0.0299 + 0.0175x

(L=*L) 0.029 0.029 + O.OlSxI

A number of studies have been performed which show the degree to which the percentage of
aluminium affects the region of NDM. The parameters used in these studies sustain a certain
degree of uncertainty in that such scattering contributions as the deformation potential
contribution, the relevant optical phonon frequencies, etc., are all dependent upon the aluminium
mole fraction. A representative calculation was performed in 1988 [1]. This was a Monte Carlo
calculation of the field dependent velocity of Alo.32Gao.68As. Comparison was not made to
experiment, as no experimental drift velocity measurements were available. However, the
calculation is of sufficiently general nature to reproduce its results here. In ref (1] a set of
parameters was chosen from the literature, about which a parameter variation was made. The
parameters are approximately represented by inserting 32% into the expressions of TABLE 1,
from which the velocity field curve of FIGURE 1 was obtained.
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FIGURE 1 Field dependent velocity for Alo. 3 2 Gao. 6 8 As, from [1].

Several points are relevant: first the peak velocity is slightly in excess of 9 x 106 cm/s, which is
considerably below that of gallium arsenide. The saturated drift velocity is however
approximately equal to that of gallium arsenide. The study in [1] undertook a number of
parameter variations. For example when the r-L separation was reduced there was as expected a
larger fraction of carriers in the L valley in equilibrium, with a consequent reduction in the
mobility. Indeed for an energy separation of 91 meV the NDM region is absenL For an increase
in the r-L separation to 140 meV there is a reduced population in the L valley, the mobility is
higher and a region of negative differential mobility is present with an increase in the peak velocity
to nearly 1.2 x 107 cm/s. Increasing the effective masses of all the valleys tends to reduce the
peak velocity as well as the saturated drift velocity. The LO phonon scattering rate increases as the
optical phonon frequency increases. Increase in the scattering rate results in fewer electrons
heated to sufficient values for intervalley transfer to occur. It was found that for an optical phonon
energy increase from 38 to 45 meV the peak velocity increased by approximately 15%. A
decrease in the optical phonon energy to 30 meV also resulted in a near 15% decrease in peak
velocity. It is important to note that for percentages of aluminium greater than 50%, the region of
NDM disappears (see the general discussion in [2]). Additionally, in the vicinity of 40%
aluminium the band structure energy minimum order changes from the 17-L-X ordering to the
X-L-F ordering.

The phrase heated, in the above paragraphs, implies nonequilibrium electrons, and an electron
temperature model is the one most often invoked to deal with this description. There are a variety
of means by which the electron temperature model is invoked, the most common being usually
predicated on a displaced Maxwellian for a distribution function and solving three sets of
equations: a carrier balance equation, a momentum balance equation and an energy balance
equation. This model is briefly considered as the language associated with it is invoked in the
device discussion.

Under uniform field conditions these equations for two levels of transfer (e.g. F and L) represent
particle, momentum and energy conservation. For particle conservation:
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()an,/'t = -ajnjF + a2n2r 2  (la)

oa2n2/At = anl FI - a2n2F2  (lb)

For Eqn (Ia) there are nI electrons in each lower energy valley and n2 electrons in each higher
energy valley. Eqn (la) indicates that there are ain, electrons scattered out, distributed equally to
the a2 higher energy valleys; and there are a2n2 electrons scattered from the higher energy valleys
into the lower energy valleys. The respective carrier scattering rates are designated Fl and 12.

For uniform fields and steady state, a condition under which the velocity field curve is generated,
the following condition holds: aln 1F, = a2 n2F2.

For momentum conservation, the second set of equations describes the rate of change of
momentum (or velocity) in the individual valleys under application of an applied field and
scattering events. Under uniform fields and for the low energy carriers this equation is:

Z(np )/t = -njeF. - nip 173  (2)

where the momentum is designated p1, =- mv 1 , and 173 is the momentum scattering rate for the
low energy carriers. Under steady state conditions: n Im1 v , = -(l/F 3)nl eF.. Similar equations
can be written for the high energy valley carriers and for holes.

For energy conservation, there are various forms in which the lower and higher energy valley
energy equations can be described. We cast the energy equations in terms of the species '1' and
species '2' electron temperatures:

a(ajnTj)/at = [mlvl 2/(3kB)] {atnt(2F3-Ft) + atn2F2) - ajn1TtFJ5 + a2n2TjF6  (3)

In Eqn (3) kB denotes the Boltzmann constant; 1 5 denotes energy relaxation within the species '1'
valley plus energy exchange with the species '2' valley; F6 denotes return energy between species
'2' and species '1' valleys. The above analysis requires calculations of the scattering rates. These
are taken from scattering integrals. For a review see (2], in which the significance of the above
description is dwelled upon. In particular, with the electric field as a driving force the three
parameters density, momentum
and temperature are determined,
as a function of field. It is
generally assumed that under
equilibrium conditions the
distribution of carriers in each AIJ'%,A

of the valleys is determined by
the density of states of each -.
valley and the energy separation
of each valley. -- 0

Adachi [3] has performed some
of the above electron
temperature calculations. In T.30oo K
particular, an estimate of the
increase of electron temperature 3o0
as a function of electric field for , , , , ,
polar phonon scattering is o00 to'

shown in FIGURE 2. It is EacnWic Fv.o E vlcm )
clear from FIGURE 2 that as
the alloy composition is FIGURE 2 Electron temperature as a function of electric field for
increased carrier heating is less various alloy compositions, under the condition of polar optical
severe, at any given value of scattering. From [3).
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field. When all of the scattering
mechanisms are included the I__
electron temperature increases
much more rapidly with field, .. 0

indicating that at high values of 0.2

electric field there is a considerable Oh
amount of transfer from the low C

energy regions to the high energy
regions [2].

Polar optical scattering also T030O K

dominates the low field mobility of -°

many of these alloys, and in 1 2 0 i'
FIGURE 3 the dependence of the '0
polar optical scattering limited ECTRIC FlaD E (Vtim)

mobility for GaAs and indicated
alloys is shown, with the apparent FIGURE 3 Polar optical scattering limited mobility as a
degradation as the alloy function of alloy composition using the electron temperature
composition is increased, model. From [3].

C. PERPENDICULAR TRANSPORT - HOT ELECTRON INJECTOR
CATHODES

While most of the discussion of high field transport in AIGaAs will be concerned with transport
parallel to the interface, the following discussion on perpendicular transport will provide an
indication of how high field transport in devices is affected by such materials as AIGaAs.

Consider FIGURE 4, which within the context of the Anderson model is a generic conduction
band diagram of a three region structure: HEA-LEA-HEA (H: high, L: low, EA: electron affinity).
In the case of hot electron injector cathodes [4], a recent application choice for Gunn diodes, the
HEA material was GaAs while the LEA material was AIGaAs. As configured the structure
consisted of an n+ heavily doped cathode, a linearly graded AlGaAs region extending over 500 A
with a height of 300 meV, an n÷ spiked doping layer, approximately 50 A long, followed by a
drift region and an n* anode. The design parameters of the structure are consistent with the
requirement that for Gunn oscillations to occur electrons must transfer from a low energy region
to a higher energy with a consequent local region of negative differential mobility. Early theories
recognised that satisfactory control of the oscillations required the presence of local regions to
force at least one parameter, e.g. a bounding electric field, to be insensitive to bias and
temperature conditions such that electrons would enter the drift region with a distribution of
energies consistent with a sufficient number of carriers in the L valley, in the case of e.g. GaAs.

The equilibrium band structure for this case (ignoring subsidiary valleys and invoking Boltzmnann
statistics) is represented in FIGURE 4 for an undoped AlGaAs launcher. One concept behind this
design is that carriers enter the drift region with a non-zero velocity whose value is estimated from
the conversion of carrier potential energy to kinetic energy. It is assumed that a large fraction of
the electrons that enter the device are F valley carriers, as are those that are in the AlGaAs region.
Those carriers that pass through the spiked region are F valley carriers, but when they get to the
boundary of the drift region there is enough energy to place a considerable number of carriers in
the L valleys. The design appears to provide improved performance of the transferred electron
oscillator, but the presence of the wide band gap AIGaAs next to the GaAs introduces, as in all
structures of this type, a trian,'ular potential well and a force that tends to confine carriers. Indeed
the presence of such a force i carriers in the continuum is of the order of 10 kV/cm and in the
wrong direction! Under bias of course there may, depending on conditions, be a net force acting
on the carriers pulling them into the transit region, but then the operating conditions would display
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a significant dependence on bias. The origin of this dilemma lies in the incomplete manner in
which transport problems are addressed. This incomplete feature is highlighted here because the
contribution we are about to focus on is present in all structures where there are large carrier
density gradients, often associated with heterojunction interfaces.
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FIGURE 4 Equilibrium density and potential energy for a hot electron
injection launcher with an n÷ spike of 1017/cm3. From [5].

The calculation displayed in FIGURE 4 was obtained through a solution to the Liouville equation
in the coordinate representation [5], and contains the relevant quantum features. However,
through an analytical expansion of the Liouville equation, in which classical transport dominates
and quantum contributions are treated as corrections, and Boltzmann statistics prevail, it has been
demonstrated that the net driving force on carriers is given by:

F = -V(V + Q/3) (4)

Q = -(hf/2m)(p-'-)(a) p 1f/12 /.) (5)

We have calculated Q, often referred to as the quantum potential, from the structure of FIGURE 1,
and find that in equilibrium there is a net force acting on the carriers that is of the order of
10 keV/cm, acting in such a direction as to move carriers into the drift region. It is perhaps
important to emphasise that the configuration of FIGURE 4 is representative of perpendicular
transport; and for the specific situation of the hot electron launcher it is expected that the details of
such things as the field dependent velocity may be of secondary importance to the feature of
providing a heterostructure offset region.

D. PERPENDICULAR TRANSPORT - AIGaAs/GaAs HETEROSTRUCTURE
BIPOLAR TRANSISTORS

The second example of perpendicular transport is that of the heterostructure bipolar transistor
(HBT). In this case the band structure of the device falls into the same generic category as that of
the hot electron injector. Typically the HEA region is a heavily doped n÷ gallium arsenide region,
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followed by an LEA region which is a heavily doped n÷ AlGaAs region (whose properties are
often application specific), followed by HEA matenal. The HEA material is often a standard p+
GaAs base followed by a low doped GaAs collector region. Most of the attention associated with
this structure involves compositional grading of the AlGaAs emitter. Here there are several
aspects to consider. First, the electrons must get from the heavily doped GaAs region to the wide
band gap AIGaAs. If the first n÷(HEA)n*(LEA) interface is not obliterated in the device
processing steps, then the interface is expected to look like that shown in FIGURE 5, where the
wide band gap material is at the left. Note that in equilibrium the density in the wide band gap
material approaches background, which for this case is 10 1 /cm3, within 300 A, and is relatively
insensitive to the density of the adjacent material. Similar remarks apply to the potential energy,
which is also shown.

,o.,10,' 0 =

e oeOJeO
b -,-
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-. 20
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FIGURE 5 Quantum mechanical calculation of the distribution of charge and potential energy
for a wide band gap/narrw band gap structure with varying doping distributions. From M51.

In the design of the HBT, if the upstream emitter interface is graded, as in the hot electron injector,
the necessity of requiring tunnelling mechanisms to move the electrons from the gallium arsenide
region to the aluminium gallium arsenide region is minimised. But most of the effort in designing
the HBT is concerned with the compositional grading of the AlGaAs in the vicinity of the base.

The quantum mechanical calculation of the equilibrium potential energy profile and electron and
hole density, for an emitter that incorporates an abrupt 1000 A long, 300 meV barrier adjacent to
the base, is displayed schematically in FIGURES 6 and 7, respectively. For this calculation an
acceptor doping of 1015/cm3, and a wide band gap emitter doping of 1017 /cm3, was assumed.
This latter is generally an order of magnitude below that of the usual design of the HBT, but is
sufficient to illustrate the features of the role of the heterostructure in the device - it prevents the
diffusion of holes from the base to the emitter while enhancing the injection of electrons into the
base. The latter is represented by the dip in the potential at the n-hetero-p interface. There is a
diffusion of mobile holes from the base to the collector region, that follows the standard results
when recombination is ignored. Higher doping in the emitter will pull down the potential within
the centre of the heterostructure region to a near zero value, which is consistent with the higher
emitter background doping. While quantum effects associated with electron injection into the base
are apparent, on the emitter side the hole density goes from its peak value within the base to a
negligible value at a distance of approximately 70 A into the emitter base; quantum effects are
likely here. The details indicate that the band structure of the base is dominated by near charge
neutrality within the base away from the heterointerface. Notice that the decrease of the
conduction band energy on the emitter side of the barrier corresponds to the increase in the space
charge on the emitter side of the barrier. This is similar to the space charge distribution in
FIGURE 5.
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FIGURE 6 Quantum mechanical calculation of the equilibrium
conduction and valence band energies for an HBT with an abrupt

electron barrier in the emitter From [5].
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E. PERPENDICULAR TRANSPORT - THE BIPOLAR INVERSION FIELD
EFFECT TRANSISTOR

The bipolar inversion field effect transistor [6] (BICFET) has the same generic ordering as that of
the two previous devices, but is of interest because in some of its present configurations it
involves the strategic placement of a planar doped (or delta doped) layer of acceptors or donors.
In particular, the configuration of the HBT shown in the previous figures can be altered to that of
the BICFET by replacing the heavily doped p base with a planar doped p region, approximately
30 A long. Unlike ordinary inversion regions which arise at suitable values of the local potential
energy, the local region of holes generated by planar doping is thought to contain many of the bias
dependent characteristics of the more common inversion layer (hence the term inversion in the
name of the device).

For the BICFET the operating voltages are different because the critical device lengths are of a
nanostructure scale. For the configuration of an HBT, and on the basis of earlier studies [7), it is
anticipated that the presence of the planar doped layer would lead to potential contours that would
lie parallel to the interface everywhere except at the vicinity of the metallisation or contact regions.
In the vicinity of the contacts they would spread from a small region at the emitter planar doped
edge into the contact regions. For the case in which the planar doped barrier is introduced as a
replacement for the base in the HBT, it is anticipated that such terms as the base transit time would
improve, simply because of a reduction in the base dimensions. The presence of the wide band
gap material such as aluminium gallium arsenide is crucial for the operation of the device because
it eliminates the possibility of a remote migration of holes toward the emitter and confines them to
the collector region.

F. PARALLEL TRANSPORT - GaAs/AIGaAs MODFETS

While much recent activity has concentrated on the structures discussed above particularly with
respect to the analog and digital properties of the devices, the vertical devices, as the above are
referred to, do not reflect the transport properties of the ternary AIGaAs. Rather they reflect
primarily the band structure of the material in concert with the lower band gap material. To
examine the role of high field transport in devices and the Gunn effect, we need to examine the
MODFET as a generic device (see ref [8] for a review).

FIGURE 8 is a sketch of a
MODFET, and while these DRAIN
structures can be very N++ N ++
complicated, the essential I G
feature of the device is that the Gas GATE G&As
wide band gap material is
doped, and a two dimensional
electron gas forms within the AjGaAs (N+.)
narrow band gap material, near
the heterostructure interface.
The structure shown
incorporates AIGaAs/GaAs.
Other structures incorporate
AIGaAs/InGaAs/GaAs, which GaAs (UNDOPED)
includes the possibility of
transport in a quantum well.

Since the offset voltage of the SUBSTHATE
AlGaAs/GaAs system is
dependent upon the mole FIGURE 8 Schematic of an n-channel MODFET.
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fraction of aluminium, and since the distribution and number density of the two dimensional
"electron gas are dependent upon the barrier height between the dissimilar materials, as shown in

SFIGURE 9, the mole fraction becomes an important design feature. For the FIGURE 9
calculations it is noted that the wide band gap material is uniformly doped, and that the entire
offset is at the heterostructure interface. The density distribution displays a decrease within the
wide band gap material where a minimum is reached. The maximum value of charge density
occurs to the left of the interface and within the narrow band gap portion of the structure. For the
100 mreV offset calculation the peak density approaches 7 x 1017/cm 3, for an approximate sheet
carrier concentration of 3 x 10"/cm2. For the 200 meV offset calculation the sheet carrier
concentration increases by approximately 40%.
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FIGURE 9a Quantum mechaical calculation of the dependence of two dimensional
electron gas on the offset voltage. Potential and etctron distribution for an

n~nt(LEA)n÷(HEA) structure with an offset of 100 meV. From [5).
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FIGURE 9b As in FIGURE 9a, but for an offset of 200 meV.
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An examination of FIGURE 9 provides some important features of transport in the MODFET.
First we are interested in transport in the GaAs region. In this region, there is a high
concentration of electrons whose origins are in the wide band gap material. Thus ideally, there is
no impurity scattering or alloy scattering to worry about. But if we look at the distribution of
charge in the aluminium gallium arsenide, it is seen that only a marginal amount of current flows
in the structure near the interface, but a substantial amount of current can flow at regions away
from the interface. Using the parameters discussed earlier it is known that the alloy and density
contribution and the scattering contributions in the aluminium gallium arsenide indicate that any
contributions to the current from the wide band gap material are undesirable. This means that
design efforts must be introduced to minimise the contributions of transport within the AlGaAs
region. One prominent
means is to introduce a 2.5............ ..................

region of planar
doping into the wide
band gap region. The
situation is displayed • 2.0

in FIGURE 10 for [
an undoped 400
meV barrier, that
incorporates a 30 A
wide planar doped Z

region with a doping
of 1019/cm 3. The
important feature to 9
note is that there is _
very little mobile ! o
charge within the wide
band gap material, and
thus the parasitic
current is minimised. o.
The details indicate that .. ...... ...... , ......... ...... ......... .....

the peak in charge falls
within the narrow band 064
gap material, and that
the presence of
exposed donors, 0.30

associated with the :
planar doping within 0
the barrier, results in a o
potential energy W LM oF
minimum in the 0. 0
vicinity of the donors. .
But the significant •
reduction in charge 0

density implies a
reduction in parasitic -0.80
current.

In addition to the 00.20 .. l ... 0 I I00 .-6W -400 -2WO 0 2W0 400) S0

above issues several ESTANC. A

others emerge. For the
materials of interest FIGURE 10 Quantum mechanical calculation of the dependence of two
there are three bands to dimensional electron gas form in the presence of a planar doped donor region.
consider, the 1, L and Potential and electron distribution for an n*(HEA)n'(LEA)n'(HEA) structure
X valleys for each of with an offset of 400 meV.
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the materials. Here, generally only the offset voltage between the gamma valleys of the two
materials are considered. For concreteness consider AE(x,ij) where ij = (r,L,X) and x denotes
the composition of aluminium. Then while the AE(xI, nT) increases as x increases from x = 0, for
sufficiently large x the subsidiary valleys begin to influence the statistics. The commonly used
value for x in MODFETs was 30%, where the offset voltage is approximately 260 meV. At this
value the commonly known DX centre comes into play and leads to instabilities particularly in
digital circuits, as a result of which much effort has been confined to MODFETs with lower
aluminium composition.

G. PARALLEL NONEQUILIBRIUM TRANSPORT - HIGH FIELD EFFECTS
AND MODFETS

We now examine high field transport in these structures. There are several ways in which these
problems can be studied. The drift and diffusion equations can be invoked, requiring the presence
of field dependent drift velocity for the carriers, or a nonequilibrium formulation transport can be
examined. For the case of nonequilibrium transport, the common approach has been to invoke
either Monte Carlo or balance equation procedures. Only the Monte Carlo approach will be
discussed below.

A particularly interesting set of results has been discussed in (9] and [10]. Both of these
calculations include real-space transfer [11], permitting electrons from the narrow band gap
material, with a sufficiently large energy, to transfer back into the wide band gap material. Typical
material parameters used in these studies are represented in TABLE 1.

The structure studied in [9] consisted of a source drain spacing of 0.75 microns and a gate
contact, 0.5 microns long, located 0.1 microns from the source boundary. The thickness of the
AlGaAs was 400 A with a uniform donor concentration of 101 A/cn3. The composition of
aluminium was 22% with a barrier near 190 meV. The gallium arsenide layer was undoped and
0.2 microns thick. While calculations were performed to examine the switching speed in going
from one voltage state to a state in which the gate and drain voltages were respectively 0.5 V and
1.0 V, we will concern ourselves only with the steady state.

What is to be expected? For these calculations in which only one volt falls across the source to
drain region, the average electric field is approximately 15 kV/cm, and is nonuniformly distributed
and determined by Poisson's equation. While the electrons acquire energy from the field as they
traverse the structure there are phonon losses within the gallium arsenide layer, and the average
energy of the carriers increases to only 350 meV at the end of the channel. Within the channel and
for approximately 75% of the channel length most of the carriers in the GaAs are T valley carriers,
with most of the transfer to the subsidiary valleys occurring near the downstream portion of the
structure as shown in FIGURE 1 la. The interesting feature of this result is that if most of the
carriers in the structure are gamma valley carriers, then the electron velocity within the channel
should be dominated by the low field mobility of the materiaL But a study of the mean carrier
velocity (FIGURE I1 b) in the structure demonstrates that in regions where there is significant
electron transfer, and a reduction of the numbers of gamma valley carriers, the average electron
velocity in the gallium arsenide continues to increase. This is reasonable, since the mobility of the
subsidiary valleys is considerably smaller than that of the gamma valley and thereby makes a
negligible contribution to the total current. Thus, even when electron transfer occurs the current is
dominated by the high mobility carriers.
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FIGURE 11 (a) Average elecuon energy and pescenlage of r-valley electrons
along the GaAs channel for y = 0.3. (b) Average elecron velocity. (9]

Another feature of importance is the relative concentration of carriers in the subsidiary valleys of
AIGaAs. According to the model of [9], with the exception of a composition of 10% aluminium,
in which case most of the carriers remain in the lower energy portions of the conduction band or
the first 75% of the device length, the movement of the energy bands closer to the gamma valley
with increased aluminium composition implies that the percentage of carriers in the subsidiary
valleys increases. Thus there are fewer light mass carriers available to conduct current and the
mean electron velocity in the aluminium gallium arsenide is expected to be significantly below that
of gallium arsenide. FIGURE 12 displays the percentage of carriers in the subsidiary valley and
the corresponding average velocity. We point out that the velocity for all but the x = 0.1 mole
fraction is approximately an order of magnitude less than that of the mean velocity in gallium
arsenide.

In [91, the authors point out that in the low field region of the structure, which is dominated by
gamma valley transport, real space transfer from the gallium arsenide to the aluminium gallium
arsenide, which is the thermionic emission of electrons from one device layer to another because
of heating of the carriers by an electric field, is approximately balanced. In the bigh field regime,
which occurs near the end of the structure, gamma valley electrons transfer to the L valley. The L
valley electrons in the GaAs easily undergo real space transfer into the L valley of AlGaAs due to
deformation potential scattering and a relatively low offset barrier for the L valley electrons. The
electrons in the A1GaAs undergo further transfer to the X and L valleys. The X valley carriers do
not transfer efficiently to the X carriers in GaAs due to an unfavourable offset voltage.
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FIGURE 12 (a) Percentage of elecam in AIGaAs which have scattered into the X valley
for the indicated aluminium compositions. (b) Average velocity in AIGaAs. (9].

The study of [10] while similar to that discussed above emphasised the role of the transport in the
AlGaAs region subject to different doping distributions. In particular, they examined an
AlGaAs&GaAs MODFET, with a gate length of 0.5 microns, centrally placed, with a spacing of
0.3 microns from the source and drain metallisation regions. The aluminium percentage was
30%. TWo cases were considered. In the first an n÷ AIGaAs region 500 A deep was doped to
1.8 x 10 l"/cm 3, followed by an undoped AIGaAs spacer layer 50 A deep, and a 2000 A undoped
gallium arsenide layer In the second structure, the first 400 A of the AlGaAs are undoped, the
last 100 A is doped to 5 x 1018/cm3; the remaining parts of the structure were unchanged. The
specific doping levels were chosen to assure identical gate capacitance and threshold voltage
levels. A self-consistent calculation was then performed, with the electrons subject to the same
scattering mechanisms as those discussed for [9]; namely polar optical, intervalley, ionised
impurity, and electron-electron scattering. Fermi statistics is also included. The calculations were
performed to reveal the differences in the high field transport in the AlGaAs for the two structures,
and thereby to reveal the relative merits of one against another. For a composition of 30%
aluminium, the offset voltage was taken as 256 meV.

n-,r calculations were performed for a drain bias of 2.0 V and two different values of gate bias,
+0.4 V. A classical calculation of the conduction band profile under the gate contact for a gate bias
of 0.4 V is shown in FIGURE 13 (D-HEMT denotes delta doped structure, U-HEMT denotes
uniformly doped structure). Note that the higher conduction band levels for the D-HEMT in the
vicinity of the gate represent the presence of fewer electrons than for the U-HEMT. The channel
electric field profile for this calculation for both structures at a gate bias of 0.4 V is also displayed
in FIGURE 13. Note that with the exception of a small region near the drain contact the field
profiles are nearly the same, signifying that comparisons of the two structures are relevant
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FIGURE 13 (a) Conduction band proffle along a line perpendicular to the middle of die gate contact for a drain
bias of 2.0 V and a gate bias of 0.4 V. Ile zero coordinate is the Schottky contact. (b) Channel electric

field profile along the device. The zero coordinate is at the source. [ 10],

The observations of FIGURE 14, which are profiles of total electron concentration along:
(1) select regions of the AIGaAs (at a distance of 550,A), (2) the heterointerface (at a distance of
100 A from physical interface), and (3) the GaAs interior (at a distance of 1900 A), indicate that
under reverse bias there is little distinction between the two structures. However, at a bias of
0.4 V, there is a reduction of electrons in the AIGaAs, and a reduction in the parasitic
contributions. A supplemn~tary calculation of [ 10] shows transconductance levels that are nearly
the same under reverse bias, but with substantial improvements under forward bias.
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FIGURE 14 (a) Relative electron concentration within various layers for a drain bias of 2.0 V and a datn
bias of -0.4 V. The zero coordinate is at the source. (b) As in (a) but for a bias of 0.4 V. ]10]
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H. NEGATIVE DIFFERENTIAL RESISTANCE THROUGH REAL SPACE
TRANSFER

i the discussion of transport in the MODFETS, we raised the issue of real space transfer. This
phenomenon was first discussed in 1979 [11], and occurs as a function of bias in all structures in
which transport is parallel to a heterointerface. Consider the superlattice sketch shown in
FIGURE 15, and imagine carriers travelling parallel to the interface. If the structure is modulation
doped then with the doping only in the wide band gap material, there will be transport in the
narrow as well as wide band gap regions, with the mobility of the narrow band gap material being
higher because of a reduced number of scattering mechanisms. Under application of an applied
bias electrons travelling in the quantum well can acquire a sufficient energy far above their thermal
equilibrium value. Electron-electron interactions will help randomise the energy gained in the field
direction, and the transfer rate of electrons in the gallium arsenide and the aluminium gallium
arsenide will be determined by the thermionic currents from the wide band gap material to the
narrow band gap material and vice versa. As in the discussion of the energy gained in the
AlGaAsdyaAs MODFETs, electrons in the AIGaAs will not be heated to as high an energy as
those electrons in the narrow band gap region, and we may expect that the transfer rate at high
fields will not be the same. Indeed more carriers are expected to transfer from the GaAs to the
AIGaAs, with the consequent reduction in local mobility.

FIGURE IS Sketch of a superfatice.

"Thus we can imagine a device in which the source and drain regions permit transport parallel to
the interface, and two components of transport emerge. First: at sufficiently high values of
electric field electrons will undergo k-space transfer to subsidiary valleys. For sufficiently long
structures this is known to lead to negative differential conductivity and the consequences thereof.
Second: real space transfer introduces another component to the negative conductance, where it is
possible for gamma valley carriers of sufficient energy in gallium arsenide to transfer to gamma
valley carriers in a wide band gap material with a consequent region of negative differential
conductivity. It is also possible for L valley carriers in GaAs to transfer to L valley carriers in
AIGaAs with a consequent region of negative differential conductivity. Several initial
experimental results are summarised in [12]. But perhaps one of the more unusual results
associated with real space transfer has been the construction of negative differential resistance
transistors NERFETs [13]. These are reviewed in [14].

I. CONCLUSION

The alloy alurninium gallium arsenide is a material whose transport properties under conditions of
high fields offer a new dimension in terms of the design of electron devices. Those designs in
which transport is perpendicular to the interfaces are based in terms of the energetics of the
carriers entering the regions of interest, or, e.g., in the case of HBT upon the reduction of hole
injection into the emitter, and the enhancement of electron injection into the base. These devices
do not depend upon the specific high field properties of the AIGaAs fur their operation. Parallel
transport, however, does expose the high field transport properties of AIGaAs. Here while the
high field transport properties associated with electron transfer in k-space are present in all devices
whose structure size is large enough to sense the NDM region, this is not the feature emphasised.
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Rather the effects of negative conductance through real space tra-nsfer are emphasised through an
understanding of its effect on the operation of such devices as MODFETs, or in the construction
of newer devices such as the NERFET.
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11. TRANSIENTS IN QUANTUM WIRES

Dissipation in rectangular quantum wires was studies through Monte Carlo
simulations. Optical and acoustic phonons were considered and it was

demonstrated that hot-electron cooling is determined by cascade emission of
optical phonons followed by a slow second stage of inelastic electron-acoustic

phonon interactions (as well as by nonequilibrium hot optical phonons). A copy of

a recent paper is enclosed.
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Mont Cado simulations of hoe nonequhlibria muelectron, reluatim in recan•ular GaAs quantum
wir of dieren coss sections we carried out. Te simulations demonstrate tht t initial stage of
Ixit-elecizon. cooling dynamic is determined by cascade emission of optical phoamis sad exhilbi
strong dependezwe on the excitation energy. The second (slow) relaxation staop hs controlled by
strongly inelastic e nneracdos with acoustic phonons as well as by noneqizilibim (hot )
opticale os The relaxatio times obtained in our silatons me In good agreement with the
rems s a of recent luminescence experiments. At low election concentrations whem hoe phonan
effecnI are negligible the cascade emission of optical p1 O.s may lead to the overcooon of the
electron system to temperature below the ie emperaturTe. e electrons the slowly (dring
tens of pcoseconda) relax to equilibrum due to the interaction with aoun"ic phoons At c -t aI
excitation enSie -trong lnterbbsndx electron scattering by optical IhI - - leads to electron
redistribution among subbands andl - Wmband population inversions, Hithe elecuor cncentration
exceeds 10' cm-1, hoe IpIIrn effiects come Into play. In con0-st to blk materiuls and quaym mio
wells, hoe phoDn eff)ecs in qUnaim wires exbfk- it strog I depuipm. o an the initial broadening of
the eergy distribudion of the elections. Me vy initial electron gas rekLustn stage In quantum
whes is faster in the presence of bopon while for t>0.5 pa the hoe pbonon Semallztlom time
deoines the charateistic electron cooling iame.

L INRODUCTIONl At the opeating temperatures of moat optoelechtroic de-

"vices (30-300 K). often the oAl y Imp -eant g and mo-
Potential possibilities of utilizn unique prperties of meertn relxaton mechanism sb the ilectron•mon-un ~rein 1 (ID) senti~cctbor strtctu13(peak- inaeractouz.4 In Po asn- to 3D or 2D) systems. eectron-

like density of stae high pacl-i density, high operation election pair collisions in QWm s do nor affect electron rea-
fr equenies) for the development of a new generation of atli wh-ereas ejeCtroo• interaction remain er
electronic and op-oelectrooi devices have stimulated on- svngg 4%ior That Is why at low electron concentration when
hanced IntIpere in Investigating the noneqWulibrium electronit ine a do i isvs-
relaxath n m delectron scattering by phonons dese•mines the adm t ionI

prpame, - of hot election gaest define much characteristics as ratio. dilye mks It appears that phor amrs i o a
device operating speed, effiiency gain Ita mp- chracter m t mea Innk t A (wis foits noise aec. Althom there exist a rmambr of pul- flui thm amet asa exnbt mu fas Alnn wid electm ittions dealing with relaxation processes I ID eectron quaha otron oi isS so eto cal phuami qua-
gAISes,- the relaxation dynamics of photomcited carriers ba b des a•thew dtpamcot phoom scattering in
unde h ly noeutlibrium conditions have received less QWls is esema.ly Iueastic due to tho ack of lael a
matetion. Recin experhmenta investigations cleary demon- symer and the reSW=n Uncertainty of Smeautiam coo-

vtrtfices, t l be b of p• upedo electron-hl pras- servation. Theratme, In 1 t e t l*ect ndynami 8be-
matin ID and 21 q stems.w*13 thiiine reaved IBM hav.r in QW' s it is m tiurmely Io I to allow fo the real
measuements in 1ID quantum wires (QW~s?'" indict that Ypho'iO W= 5p~mEin QWIL.
nonequl--- -b---- carrier relaxation to the lowest 11) state is When electrons we excited wrell above the boIo of the
rather slow cmpa; to that measured In qauamm wells. coruhiction band they relax via cascade emdssio of phomorat
This, With crrent Iners in developing a new generation of andl drv the phoo, sytem oat of equilibrium- It is nw a
devices based on ID semiconihuctor sructures it is' Impr-n commonl a1COeped notion that (hue)tm00
to understand the temporal evolutiont of relaxation of non- Phoioi Strongly affct electifn tranpor and relaxation In
equilibrium carriers; following initial excitaton This evoln- bulk materials (see e.g., ReE 24). Hot phimon r et. also'
don, especaly its initial stage (first few picosecoods follow- expladin observations of very slow electront coolin in quan-
ing pulse excitation), is of great importanice for device tam wells following sobpiosecorl pholoecitaton of hot
appications, and, in paruticlr for high-speed pliotonic de- elections (see, e4g., Ref. 25). The hot phIouuzn problemn in
vices. There we seveaul Importanit asipect of electroni relax- QWls has been addressed previously in Refs2. 26. and L.
ation in ID quantm wires to be considered in great detail. However, the kinetic approach used in Ret 2 does not pro-
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vide lnfomaion about relaxation dynamics, while in Ref. 8 justified for the electaronon ilemnction in a QWls dei-
the pecuiarities relaw d to ID natuir of nonequilflthum cstrating that the Golden Rule formalism my be rejmed
electron-phonon systew have been overlooked, by convolving a Gmussian b eing unction omining a

In contr to 3W0 or 2D systems, the intrsubband constant briosdeig hew" We vaery the =cai emu
ele n-Ject pair Imeraction in QWI leads only to mo- e, whidh roeqpmIs to the emer at a Gmadan dlaftr-
menMum exclange betwee inteaction indisdagnibe ton. as well as, A, the half-width of dis distrbdion.
electrons and does not contribute to the relzation process Noneqilibrium pisnons have been included by calcu-
Hence. at least during ini relaxation stage, tf electrOn lating die phomam occupation umber vses pbonon wave
gas cannot be dsibod by a Maxwelllan distribution func- vector (plma distributio) within the Moos Carlo puce-
tio and it is necessary to investigate elect relnkxaom due. In accodnce with theD n re ofopticalpboms in
without any a priori asimlptions about the electron dlstribu- QWIs, the increment of phonon occumao number aftr
tio functiono Moreover, the ID nature o opical phonous each emission (sign +) or absoption (ap -) evat is given
in QWls results in some spedc peculiarities of act Phonon by die Wim ±(2vJAq)(x/N), whe Aq is the sp at dt
buildup tbat should strongly modify hot phofon effects in grid in q qmu used to reord Ithe Nr hlsogram•,x is the
QW10. electron concntration per unit length of a QWL amd N Is dte

In dts paerte simulation d of the rhla bon of hot non- cmal unbe of particles in dsh•t aou.
equilibrium electrons has been car, ied out allowing for all In Moose Cado simulations of bulk md 2D nopquilib.
the speci asect of electron dynamics in Q" mentioned rime elewtron a poon stMs, fth me beva for
above the ;phoIn occupation mebe Aq is to a crucial parmete

sive dwe Iterval is much ls thin the q-qpa rion
L MODEL AND METHOD populatWe by nmeuilibrium pbom wbkh ch be easily

Simulation of hot-electon relxato has been - estimated.a is is due to the fact that tbe pwon rseboep-
formed in a rectangular GaAs QWIz embedded in AAs We tio mse depends on the integrated (avera) occupacy over
employ an eneemble Mnome Caro cImqe Modallay suimd tbe eai region which is not crucially aemkive ft tbe mesh

for ID electron simulation.'s A two.lmmonel, bJn ly intervaL However, inD systems as we will se In a doe
deep square potential well confines nin the QWI cour., the rabsorption oft depends only on the local vle
wft a multimbband energy strucur Te hot-electron en- of phonon occupancy N. at an approIatm q vale. Ther-
eorgy dimsipadon model iwnclds elecruo inemnci with fore, as the mesh terval becomes smial, both the local

conined LO), localnid sfamr (iner- occupancy and tbe reaborpion rat become largu This
AmýiuWa (SO) plonous.W and bu*4l. acoustic problem is particulady important wben comidering newr-
p o well as unonequilibrium optical ph•• o popula- en electm exciation Them am of course,
dons. We he included ielasticity of eectram-acoustic pho- phyical lim on the magnitude of Aq. Tbee limits fallow
no scamering in a QWI in full detamil the dcique frm the uncertinty in di pbono longitudinal wae mum-
pr-posed in Ref. 23. The initial distribution of excied elec- bet due to ft fiuke lengti of the QWL
irom among blbasds is considered Io be de•i•ed by the We have taken a QWI of length L,-10 sum, so that
deusity of sates for a given excess energy in each sibband. Aqm2wfLd6XlO 0cm-l. Hot phonon thermalidoeo due

We st the imlatio of elecmtom rdeAa n a the to the decay of optical phonom into :otic pomnow is
intal excliaon by a short pule with a duration of 0.1 pm. taken into account by recalculating N, for evesy mesh Inr-
We have not simulated elecow relaxation in coAere- regime val at the end of each time step. It has been demommned
(t<lO0 Is) whkb rquirs a quantum mechancal deacrip- tba the phAo thermaliuation twe rii in low-dlmeomd
tio. lIsted we bave focosed our amenton the time structures dpends weky on the ims of doe- structuremd is
nage t>0.l .ps when electrons can be treaed close so thu bu value. For simulationm at T-30 md 77 K,

semidumicany."' We are interested pImay in pecoulari- we have usnd ft value rh- 7 pm.4 he time slep in our
ties of tbe eecftron oo ineeracton in QwI. Theefre, simulations has been choa to be smaler tban die averag
we do not rake into account &e delt-l imemacdon, time between two events of electron caeig by optical
This sitadon could take place when electron are phooex- pb-moe much less dan the -no thermalraon time
died from near-moomeec impurity evdls. lbe initial r. We have not tken inmo accoun the Inc ea- e in the
sote for dectron reaxation accoun for do broadeuing of acoustic phonon population a a result of tde deca of non-
the electron enem distribution due to two eec I) unc eq- euilibrium optical phonm. There -e two ream for dts.
mainty in electr• Initd energy due to tdh sort deectn sv- Fi, the buidup of nonequilibrium optical piboom onPP
amre lifetime at the excited level (Ae.10-2 eV for only In a very narrow region of de Bdrillouin (neam the
At,-10-13 a); (ii) sectral broadening of the cting - zone cenwer), so that over the entire zone tbe average occu-
with duation of the ordr of 10-'3L In acco in for these pion mmbe increases only eligiTh. s• bi true for sys-
effects we assume that they both lead to a Gaussian distribu- ters of any dimemionlity nce the elctron s , I ctIn
dtn of electron energy at t-to, which corrsponds to the with phoons populate only the center region of the Brillonin
end of the exciaiou pule. A Gaussian broadening factor is zo Second the acoumic phonos in QWas embeded in
used instead of a Lorentzlan (typically incorporaed into ide- surronnding materials with sAivml elc poper i (GaAs
alized tbeoretical modelseu) to prevent the unrealistically in AlAs in our cae) may penetrate duuugh GaAAIALas in-
large spead of electron enmerie. This approach has been terfaces and esap from the QWL Therefore, we have ex-
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Thus it consists of two powi the kineic renuy coeqiou
WS So on deree of eFdnm in a QWI mid the imernbbud
separation emrgy. The eecto excitation e gy e ha
been varied ftom 20 to I00 meV. This implies that for this
particular cmusecdon of the QWl up W the tihme lowemt
subbamls can be occupied by elctw a the initial time,
t -0. One can se from Fig. 1(a) that for electrom exdcttim
a 2O mev, the eectron gas cooling is slow ("slow" stae).
The "fast" sage in the mean electron energy dJ;mI on
time is observed when electrons ae excited above the optical
phonom energy (AWLo or Awso, where wLo and Swso we
energies of LA and SO pIorona respectively). Escun J&
fdaly (in the mbplcoseCond time scale) cool down losing
thewr energ due to the imaraction, wi& optical phoumm.
Since the optical phono absorption evem at - m-Peue
T-77 K ae negligibly rae, the elctrun gas re tion dy.
namcs is detmined by the mission of ooptil oni
with characteristic times r._-LO-is and r._4W, 0 -l
(for electron-LO and electron-SO Po himmction. maeps.
dvdy). It is worth to mention that ultrafast ameqvulbiomm
carder relaxation with characteristic cooing tim of the
same order of magniftide have beow experimenall ofbmve
in tihme-rsoledem. 0 .. - Dmcm and cotadogluhmdaim
cae mea emem9. At low optical excitation levels

the laser citaion?' Tbi hiplies tha hot u lose the
mao portion of thr & - em ne drg the s te mud
sIo' I than the excitation pulse of 25 ps. The analysis of
low4empeture spec*md • m asu r the

p carrier capture and relaxation so the bomm subbands in
GaAs QWIs grow n nooplamr sbstrate s occurs in a sub.
piosecon tme scale.11 At a lattice temperature of T-300 K
the electron cooling dynammics is Inimnheed strongly by op-

FI. I. T mh of * amn e• mmo i-. Qw of t tical Ph-m absoqrion which reduces the electron gas cool-
macim IS0X250 A3 d exc~hmin at tm biice auumm (a) T-77 K in rate ftIg 1(b)].
md (b) T-300 L C=e I In (a) cup , I io u', acm ezdlrm emrW The duration of the "f r" elaxation stae as well as dt

.- 20 meV 2. 42 meV. 3.67 m.VY 4. 100 mY. In (b) 1.42 MeM 2.67 entire electr gas Cooling dynamiCs for f.ŽAWLO e
•. 3. loo-v, a strong dependence on the excitation energy. As discussed

below, when electrons ae excited Just above the LO pbom
cem theml conductivity and th QwI tuMd not be M W they cool down to the botom -of the firt smbbmd on
heated much more dtn the whole CaA stAIAS t amplcomomdtme scale (curve 2 i, JFi. l(a)mdcarve 1
Given that the mounding AlAs is sufficledy smmive, the in 1(b)]. Electron emit optical phomnoum and occopy roten
increase in tmnperatue would be negligible en if the QWI near the mibband bottom. Therefor the mein elec-on- ea-
strongly radian acostc 11o e=V drops below that for w.-20 meV (curv I in ftIg1(a)].

For a lattice temperature of T-300 K we obseve anomalous
Ill RESULTS AND ISCUSSION cooling dynamics when electrons o below the thermal
A. Low e _ec __ nOr equili'um energy [cur In Fig. 1(b)]. Overcoolng of the

electron gas occus if the PlecPr-n excitation eer ftals boo
LAt us first consider electron concenratlons l dnn 105 the mrne wLo<4<AwLo+kT/2, whom kaT12 is the

cm-' wher nomequilibriun plm. eI cts can be neglected. electron kinetic energy at a given tempa-ure T cotespond-
Calculations with various excitatio egie show dot ing to one dree of freedom in a QWL At lower tmper

in the time scale of 10'9 s elecuo raation exhibits one or tures (T=77 K) the trasiemn electrom ovecooling d;Is e
two dlsinguisbahs stages Figure 1 demonstrates the elec- becmse the chos broadening of electron h*l energy dis-
tro ooing dyamics in a QWI with assection 15•0X250 tribution exceeds the electm thermsl equilirium energy
A2 for lattice mperst of T-77 K and T-300 K, as well kTI2.
am for different electron excitation eergies r. cumed from The "slow" stave of electron relaantion is controlled by
the bottom of the lowest condction, subbod The mean the electrom interaction with acoustic Plnom. Our calcula-
electron energy plotted on the vertical axis in Fgs. 1(a) and dons demonstrate the electron gas thermaliration psocePo in
l(b) is calculated relative to the bottom of the first subbnd. a QWI of cross section of 15•0X250 A2 lasts about I us at a
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NO.2I lbs ht of Vmtc aft OWNI for~ QWI8
A& ivo domsm a ncdaw 4OX40 A2 (Omw I a 21 1Ox250 A"

(emm 3 -ad 4). Com I -- 3 amq 1• ID iM a 6Mm 4-20
enV. 2 md 4. 100 mV. Tlh hoke empwmau k T-mn L.

lattice tanperaire T-30 K (Fig. 1(a)] and 30 pa at T-300
K(Pft (b)lmbs time dependsstmongly not onlyan the
latice semperatue but also on the c a s section of a QWI as
does the acoustic p•one.o n IU rule of sc -

c phonon scaMin is demounstrted Ft. 2 o eletn
cooling dynamics in a QWI with a ns m tion 40x40 A2

compared with dmi coolinl dyamlcs in a 150X250 A2 QWL 31p

The elecron enrgy relaxation due to the imeraction with
acoustic phonons is much fasme in the tN QWI a a remit
of two factors: (i) the acoustic pimon-n ing ame is
roughly inversely proportional to the crosI section of a QWL, RO. & lm evoinfin of do or em u d fr O -d
and 0i) the inelasticty of the hdecirou-er inucd pmbmo -r ordiniaa mugi i ft t; Wa r-77 L (b)
action also ncases with the decrease of the u sect•min. T-300 .

1a relaxaton time of the ame order of magminde
have been derived fom the tiumeesolved

-ee measuremmis at low excittion ,levels. Afker initial other directions In the eeme limit of thik QWls, when a
ht-carrier relaxAion below optical phone. -eemro the fur- larg nmen of subbands becomes occoup the D elec.
tho evolution of the bankd-eg luminiescence line sape is mean energy sends to 3k&TI2 corresponding to the 3D dlec-

d by theime of the order of of oun ps.
plcoseoo•.2 ThWerefterem,. •' phooineer- Simulation of ho.lectron relaxation dynamics in QWh
ction m gM be re.pousible for the tieeo m luon of lnmi- demoustrae thatur iusubba electron -- I g pmrimua

acenm sie uem Rough estuim aes yield eectron thermalit- by optical pbonow leads so a signhficam cri redistribudion
ton itme do e to era1tion with acoustic phonons of the among subbands (ft 3). When electrons; e excited well
ord of 500 pa for t sucture parame)ers and. me above the boom of the second subhend (46-100 MV)
(T-5 K)eof Ref. 12. multipletelecthon trnltions between various abbads doe

One can •iee hm Fig. l(a) and Fig. (b) taist te electron to Imesaton with optical phooneu l ead to a fno osown.s
therm equilibrium eney for T-300 K is larefr Tn could time d le of the relative occupancy of the ) Amt (low-
be expecied Ones kwT12h T13 meV. while for T-77 K nt et) sohiund (curves 3 in Figs. 3(s) and 3(b). Acaustic pbo-
patmaelly coimides with kT/2-3.3 meV. MThe diffeance in no scatering is also responsible for elecou. 1nsersxbb25d
thermal eauilbrm erea res comes frm ti e calculaion of trantions. For tbe cae where the ros section is 10dX250
the elPcron a mergy in QWIs with zyultimbland. energy A the separation between the first adl fte second bband

uce. Approximate ly one atd of electrons upy upper is less thme the optical phonon ery. so that dlectros can-
subbTnds in the equilibrium stae at a lattie emeat e- not be scatered fsum the b ottom of h seond owbband by
T-300 dedue o the Bolmann distriobotio The mean elec- the emission of e ptical pn•ons. Accordingly, at low em-k -,
ton enegy includes the lecton as kinetc energy (kpT/2) persues electroecan be "trapped In the second -bband.
of free motion along the wire and fth energy reprs'eenting the They are slowly (with characteristic time of teas and bun-
spata quantization (separon between subba•ds) in two dreds of pwoseconds) released from it doe to imrsoubbad

4 J.AppL R ,qb ya 7. No. Z.15 July 194 G a at at
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the two lowest sands 3 pa after excimion. Ecrom i.
the fiAm aubbmd an UMl bot (wave umabers k>2x 10 nm-l
on carve I in Ftg. 4) ater emisaion of optical jiouum ad
they relax to the tto-mg of the subbaud by imeracting with
acoustic Plotom. Electrom in dte second subband occupy
m-u with mulir ,wae vectors mne the subband bosom.
This Population inversion near the cener of th Ddionin
zone (k-0) hlats about 10 pa at a iattice temperatane of
T-77 L. Ibis due is defimd by lurasubbat and uijesb.
band electron scatrIn by acousic p hns rmu•mbbad
electrn scatte by acoustic poinom is responible for
eleinm release from the second subband at low tempera-
aSi ,eI where optical plmoon absorption is vzuaUy bem out,
while Wnazsubband acoustic pbonn sceIg leods to the
themalizadon of the electron distributim. As am cmn se
from Fig 4 the populabi inv•sion at awn elecn wave
vectors is reduced due to p I-emP of soome fration of elec-

FIo. 4. mOCm dism In mo uo q= In a QWI wi m uorn ner te boom of the kM subband. IW mamber and
soCtion 1DX250 A2 3 p Mint ezdmoo0o Mat 46--67 nV. Cov I fepm- ene y of these eecton depend strong •n dthe excitaion

la o 6 s., M diarlbotim h *a G (buss) mdo co',,e 2 up.. regime. Due to the Glasaian electon excitado enegy dis.-
sos t o utbdi . The noe ui mi, b r-77 IL tribudon some electrorn from the high-energy tal cam emit

two optical phonos; and cool down to the ftom of the firt
elecIon scattering by acoustic pbhoom c(urves 3 and 4 in subband. Thea, as the eectron initial emn y t -r oe in-
FIg 3(&)]. In this case the second subbend surves as a hot- crI , the occupation of ame with small wave vector in
electron reervoir and significanly down dectrorn cg the kM aubbad alsoo increases and the efiect of population
Even in the cae when m Iot e-ec om P rw excited into the invasio decrmes.
first subband (4-20 me) a sma l faction of them (from
the bhi-energy tall of the Gaussiman excitation engy disui-
budon) mw touidly scattered by acoustic phonoos to the sec- Due to optical phofon qumdzamn and Mhe reultan ID
ond subbasd and thn reumn to the rm one (curve 1 in Fti. momneum comervation in quwmam whes, elec1* mm cm
3(@)]. The enrgy of the plateau (curve 3 in FI• 1(a)] vhue- emit or absorb optical phonorn with wave vecsor which me
ally coincides with the position of the second subband with stritly defined by the electro momenum ad the phonon
respec to the kim subbat l boomm (27 meV) indicating that enMy. In Seneral, the pmn wave number Is deined by
electramn ar "irpped" there. At igh mnperatures (T-300 the energy and momaeum comervaion equadom and is
K. F'g. 3(b)] electrons "cpe" from the upper subbands give by
due to inersubband absorption of optical phIm a as well as q- 4 2kk' con 0, (I)
stronger im bband acoustic phom wcasting. amn reach
an equilibrium distribution amo wbbads In 30 ps. wher k is the elecmo wave umber before scaterin

Under ceran excitaion conAdiom Wm bbd dec- k' - 4.9±2Nt*aoA is the election wave umber afe
tron s by op picl- maiy lead to uner•ubband absorption (sig +) or emiseson (dp -) of th optical pho-
population inversion. We observe an' - rabband. population -o of fruquency ft, and 0 is the angle betwenlcto
invers'mio when two conditions = umec (I) separation be. wave vectors before and after scattering In ID srcue
tween two lowest sbl Ids in the QWI is less tn minimum then ma Jist two Enal rames for sca-ttered Iecum : forward
optical p1 n (L0 or SO) eer, so that dectrons camnot scatterIng with an •.1 or backward stt with Cos 9
be scatered from the botom of the second subband by the -- 1. Consegenatdy there mu two pogleL phouns wave
emission of opticalph (we dm eresults for a vectors available for emission (and two for absorpdo) by
QWI with am section 150X250 where this condition is my single deec=
Mfll;d (l) dectronm m excid )st above chaacteristic(
enaep .- eu+ 4•w,. where e s the eneagy of the botm qi".k-k'i, q2 -k+k'[ (2)
of do second dbbsud. Due to a significanz diifrence in the In ast, in qunumm wells (or bulk maserls) due to ex-
mmber of mAl saes (peak-like density of ses near each ismte of additional degpee(s) of freeaom, cm cms takWe My
subbaibottomt) c-tmrs from both the km and the econd value in the range (- 1,+ 1). so that thee ian andre range of
unbbmads mu scattered predomimunly lino the second sub- a phonen q values from Ik-k'l to k+k' available f ec-
baed botto a e -od the m sion of LO phoFE- . Th us, the amonkractions.
umber of lectos at the bom of the second mubband Therfore, electrons in QWls vig appreciably differ-
exceeds the Nmber of electrons at the bottm of the fim ent Xis generate nonequhfibrium phonns in differem
subbaud and a smong inmersubbend population inversion oc- narrow q-qace reglio which do not overhlp. In tum ftse
cars neam the ceof the Briilonin zone (k-0). Figure 4 plonons can be reabsorbed only by the electrons that hve
presem the distribtion of elecmn inmomentum spce for generated them, unk in bulk mateds and in quaumu
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pbhnom me mgleceed the cooling dymmaics diplays two
bdisigudshble stages fte fast SUP (with mobpcosmod do-

ridon) doe to die cacade emission c opfical phmom,, and
dU secomd slow stoe of 1lectrop tdH Zicss dee in.-
macdons with acoostc phoon It mt be noted, bowe,
dat in tde Sivm time scale of 10 pg, Wossdc pbom scat-
MCOM does nMt vi influence the electron mbimic dy-
mmics in dis QWI with a dw lar am secion at 150
x250 A2. As me con se fhm fi 5 the vey inkia

relaxation Map (I<o.S pg) is fahow in do pI sb at hot
pnmm. ir higer• wosqdl = - popoialam ar
aeMed (4 maeV). the faster is the very hiMdl vlalon smae.

P bis effect can be muxermtood if cm flew ccoddem dte mm-
p.Ma dq00e10e o0 f ft mdmics ML Al hlgh vmpem-
Wars both fte emism and absorpim rem an bghc M-

leads to fW NeW redisMtitin of exched ,eeI,.. The
- ~~~~coolin ue of elct whic emit apca phm. in-

FnG S. 1Mommolomain smav a a tmcdi o d w shor Wfid C011 W f00cm wbh =mm pm

ma t , mv s t 45 dw So LO 4m 0f Im cresses and tha of electr which asib I hmm d' r e
Id WifMt of d aW. moly dbc mma N mom o ,dm m k because o th u dependce of ID desity of
n-s0 c-'a MON Um uPM Is T-30 IL Solf Comms dmmilm 1 "um and scattrng raes. Mhe mimcos, hwver is fawt
cmpr -b~ W r d CUBo ddmq.b de I,~ tha the dceseAe so the same ,7* -lhml na.i lmg,
qpy o-to Cmt a deo-sui= QWI g, 1S O . the oawud ID electron ps coolHng rue bma when the

electron. energ redhistr es due so emissio and ai tc
wellk wher electrons co nicbso lOuoms eombted by a~ o apticd *mm At mey hIgh I -~s ak bwm
electrons. Cousequetly. electrom wbi& hv H Ma0- on a vmy hot thme scale while electmn dsbmm at low
Si camot inmeact tugh the emissim ml msequm .- pam.u v sti remais u ned. Hence. vftnmy k"

o of optical ;h, m-. Thus electoanm and the eectmon coot farme in QWhs mnases whe buuh th6e
pomm associaed with tmem (with q;p wave vec- blan empuIsI.. IPrvded thabt decuous m excod. well
tor) are isolated rom other electroaloom p-s If elec- above opical phonon. nu -. ad thernm eqoilbdm en-
tram diffenNO sames. ThIs. for ID smucmiii we dimi- au. (4oM thao in bulk matmris, wh•e o emisson nd
nate one cros- delon effect whicb is always prsn in absopti rates l , , e with emW te meadation m is
the aorrequibriumm eectron-ponon system in buk matrils fIhis at low bate tempsamu The m dbould be no u-
ra in quamm wells and wch it p ims a when cod p e- dependence of de initial relaxaio tat in 2D syw-

aim electric nd.e. umns.) To observe an Ap tempeae effm on th
Another consequence of the ID namum of the elecutm- rexai m sate it is necessary that phoanionoapied rseber

phomno ameracuon in QW• s is tat the rsoqtn proNi- be eaer than 1. Under p-ofan equiibrium in ochup a t
ity for each single electron in the QWI does not depend on onabers could evm be unaddrable in a solid sme. How-
the ine•gated phono occupatc number but Only an the em. due to moog buil•tp of n pmom at
local occpancy at a certain q. 1bis rabasoon probability high excied dectron concanmuican fte ocmpulon momber
decrs as the p•om distmr tion qsesds over q space f cra-I pbomn modes may be coiderbly hih dm 1.
(given dhat the i'egra-ed occupancy is duhomd by the con- ibis is why theW Inital mic is faster for higher nonequ-
cenUrtio of excised electrans and rmaini constanO) The libr phonoa aocuopatlans and *vma fo nm wer inital
qmada o(ftsh nooeqilibrium phonon population in q space elcto emeg distributima (Fig. 5).
ransut from the broadengaft the eltonPP m g s a sro ibsa - One can wefom Fig. 5 tha the came of hot phenan
dio. As a rsemt, the rabsorption rae and hot phonon ecsms leads to a ubsta•tial reduction, of the eA un p s roolI
depend strongly on the enev distibudon of exxhse dec- rate for t>0.5 pa doe tong reabsorption of mnneqillib-
1000m. rhm phonous The onset of hot phonm ocom sooner if the

Let a firosider a simlified piture in whkh tmh I electron may dirion o is narrower (4 asv) Hence,
only am enr y bband and . O phoom wme neglectmd; t electron cooling ss dower for anow decmton distribidcns.
Is, only LO and acoustic phoonm puest in te QWL Tm e" c of amwing of t•h lca eecrm g 41dsbut is
Tha iomplifed pictre allows a so refie the pare ID effect similar to im of incmming the electron acemmion and,
Of the bcwaing Of •h elemm emne distribution do as we have aleady discussed, it is a purey ID efiect As has
buildup of hot ponom and, henc, oan decom cooli dy- ben demonrated in a prevos ubsection in QWIs with
mica. Figure 5 illusitrae electron cooling dynamics in a mash cross sections (40x40 A) fth acostic pheonm WStW
15OX2.0 A2a QWI at T-30 K following inidl electron ax- injg ra is higher and this scatmte is much moe inlastic
citton at an em y 4.5 tim the LO phbmo my for two than in Q as with large cross co (150•X20 ,2).
differ" Gaussian electron distribution half width 30 and 4 ibefre, in a QWI with a 40x40 A2 css secdon, acousc
meV. For comparson. we plot fthe elctron veluuton dynam- phonon scatteing is a very effectve einm dissipation

:s without nonequilibrium optcal ponos. When hot mecham and it is reqnmible for fie relaation and

6 J. AppL Phys.. VOL 76, No. 2, 15 JAly 1904 am" a a,
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90. 4. Mm m dmarw vs d r a umll• o /dnbb QWI 910.7. % Time, o fto dam a. cmlmpdm o ft Im (bIwn nb.
mwcan wth bohlk L ) SO qa0 ai so" Whud a weit a nw"-ok P tu - *m - -i c Pil.
P-MO, EbCOm Io m. u I eail M- 10,',CM-. 0do immiem m
mCdOIm m dm sae In Pi. S.

enwy ndf a ma"ler pin of "potential" e• y than the 30
meV curve.

mearuf out the effect of ft itia broadening of the dec- I. SUMMARY
am diotbudn• an the coobig ML

We have also cosidered the reaistic cae wie the Simulatio nweals complexn p O boht-elecron
multiabbeae sacure of 6he QWI is tkes iolo accoum ps cooHng dyamics on excitation enmerg, iaatce Ntpe-
a-oug with al1 possible optical pouon modes (LO and SO). ram and m-1a P psirmeera of QWL lect=n relaxation in
R m 6 shiow the elec mn coolg dynamics in thins alistic mubpiosecond time scde is conoed by their d minaction
suacure for 4 and 30 meV elecon ecilatn linewiddt. with confined optica PFOOom. Whereas bedmaldb a of the
The dependence of hot phofon buldtup on the dlecu dis- electm disa ution is defined by esensmily neA-k-
vtbo bIoadenIng is washed out almost completey in dts ' ponoum scattering. Electron gas dwtl udiza-
realistic sructure doe to various lisuabbond aeal 1mer- b- don is much fasm in a thinner QWI due to higNOr acoustic-
bond mumidou wsirted by the LO and the two SO mode. phonon scatnn rate and manger inelasticity of eectro-
The reaso is doht nne*quilbum phonon peaks in q space ousic pon bection. The relaxaonth dem obtained in
in this case overlap and form a complex broad distribution in our simulatiousm e in good apeement with the reolt of
q space viualy independent of initi electro diibutsio optical meaurment':Iuu
The main effect which comes ino play wihin thisnmelistic Varisdon of the iunit electron enexy substaulaUy
model is the dependence of the umber of the upper sub- chapes the Peite pictue of hot-electron reauxan due to
bands hivolved in electron coolin on the inidal elecuton the jumcesa of eiectrons with varous pnom in QWIs
eoemu distribution. Figr 7 demsomlraes the Umr evolution Calculations demonstrate potoa possiblities of two d-
of the abbmnd fiing by electron In the cas at a brod fects: electron ps ovecooling and dynanec lmumbbod
eecron hod distribution (30 meV) thene anre mb- population Inversion. Both effiects e axibit av dep e
bands occupied by electirs scatered fn.rom the hig-energ on the lattice mp •.

taL Therefoe the reur of electrons to the first anboad is Population. Imnvsion is well pronouned at low aempera-
slower thn for a nmrow dectron distbution (4 meV). Hot totes. whesas electron as overcooling benefits fi•. high
phononsleadtosroneIr mmbF4 ldelectrondituribudon - m Peru1s. At low tempmrses elecons cam be
and slower ren tothe lowest ubbnd. By In FIg. "trpped" in the upper sabbands below the optical pheonn
6 and7 one n dot at tine dIo rN -occupation of msbmids enmgy and almy the for quit a long dme dedned by hIer-
for 4 and 30 meV exciation Hewit virtually does not abbanl 'elt-eousic phonon ihmuction.
abct the men-eectron e-ergi which coiacide for both We have found dta hot phononu Pc,- in QWIs we well
excitation rgimes sfier 3 ps following excitation. This, at pr-mi-c-d for electon con ttions eu aleo or higher
the am glce. strange behavior is related to the fact that the thn 10' cu'- and depend stroogly on she eoesV disuba-
dectmn k ener•y rlaed to ID fiee motion in each don of exaied electrons. Hot os efoects became w-aker
subband is hge for 4 meV ex ton in d doe to as the bradening of the excited election amp distribuon
sonnger hot p*on - effects. This difference in inetic mer- icmases. This result is n compleft ommat to the cue of
gl ins compinsated by the higher occupation of the upper bulk mamal and quanmam wells wbhee fte enm distribs-
subhmeds in the cae of a 30 meV inewid. Conmequently, on of excited electr viaMlly does no affect te buildup
the 4 meV curve in FPi 6 comtains a lawrer pat of kinetic of nonequiibrdan phonom and the reabsorption rae
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12. RECOMMENDATIONS

The density matrix in the coordinate representation is an extraordinary

means of studying quantum transport in nanoscale devices. While not discussed in

this document this approach is being used to study the formation of barriers at

metal/semiconductor interfaces. Presently, the density matrix in the coordinate

representation, along with Green's function approaches are the only quantum

device simulations explicitly accounting for dissipation. The density matrix is also
the only quantum transport procedure presently capable of handling both electron

and hole transport. Its ability to directly compute current from the nonequilibrium

quantum distribution function is a significant advance over those current

algorithms that employ the Tsu-Esaki formulation. Further, the presence of menu-

driven algorithms fur both workstations and PCs suggests that the approach taken

at SRA will provide a significant design tool.
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